RECONSTRUCTION OF INTERFACES USING ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

Application to the geometric inverse problem of corrosion detection in a copper converter

Jérémy Dalphin* - Axel Osses* - Matias Courdurier°

*Centro de Modelamiento Matemático (CMM), Facultad de Ciencas Físicas y Matemáticas.

° Pontificia Universidad Católica de Chile (PUC), Facultad de Matemáticas.

Tuesday August 23th 2016

General objectives associated with the project

- Study theoretically/numerically the reconstruction of a damaged thermal insulating material in a copper converter using electrostatic/thermal measurements.
- Give some quantitative/qualitative results concerning the unknown shape of the interface air/copper and the location of the purified copper, especially near the insulating layer.

Recovering the conductivity from boundary measurements

The situation can be modelled by the following equation:

$$\begin{cases} \operatorname{div} \left(\gamma \nabla u \right) = 0 & \text{in} \quad \Omega := \Omega_{\text{air}} \sqcup \Omega_{\text{copper}} \sqcup \Omega_{\text{insulation}} \\ u = \varphi & \text{on} \quad \Gamma_{\text{measure}} \\ \partial_{\mathbf{n}} u = 0 & \text{on} \quad \partial \Omega \backslash \Gamma_{\text{measure}}. \end{cases}$$

Goal: recover $\gamma = \gamma_{air} \mathbf{1}_{\Omega_{air}} + \gamma_{copper} \mathbf{1}_{\Omega_{copper}} + \gamma_{insulating} \mathbf{1}_{\Omega_{insulating}}$ from the knowledge of $\partial_{\mathbf{n}} u|_{\Gamma_{measure}}$.

A geometric inverse problem as a limiting case

Since $\gamma_{air}=0$ and $\gamma_{copper}=+\infty$, we obtain the boundary value problem:

$$\begin{cases} \Delta u = 0 & \text{in} \quad \Omega \\ u = \varphi & \text{on} \quad \Gamma_{measure} \\ u = 0 & \text{on} \quad \Gamma_{copper} \\ \partial_{\mathbf{n}} u = 0 & \text{on} \quad \Gamma_{air} \quad \text{and} \quad \partial \Omega \backslash \left(\Gamma_{measure} \sqcup \Gamma_{air} \sqcup \Gamma_{copper} \right). \end{cases}$$

Goal: recover Γ_{air} and Γ_{copper} from the knowledge of $\partial_{\mathbf{n}} u|_{\Gamma_{measure}}$, add some geometrical informations at the transition point (position, normal).

Another corrosion detection problem

The corrosion can also be modelled by the boundary value problem:

$$\begin{cases} \Delta u = 0 & \text{in} \quad \Omega \\ u = \varphi & \text{on} \quad \Gamma_{accessible} \\ \partial_{\mathbf{n}} u + \gamma u = 0 & \text{on} \quad \Gamma_{inaccessible}, \\ \partial_{\mathbf{n}} u = 0 & \text{on} \quad \partial \Omega \backslash \left(\Gamma_{accessible} \sqcup \Gamma_{inaccessible} \right) \end{cases}$$

Goal: recover γ from the knowledge of $\partial_{\mathbf{n}} u|_{\Gamma_{measure}}$, locate the purified copper and the slag phase.

Some perspectives of research

- Industrial issues: using asymptotic analysis and perturbations methods, give some informations about the transition air/copper, slag/purified phases, damage width of the insulating layer.
- Mathematical issues: wellposedness of the geometric inverse problems (uniqueness), good stability estimates (Lipschitz).
- Numerical issues: these problems can also be seen as shape optimization ones by considering for example the functional:

$$\inf_{\Omega} \int_{\Gamma_{measure}} |\partial_{\mathbf{n}} u_{\Omega} - g|^2,$$

where u_{Ω} is the solution of a PDE posed on a domain Ω with φ as a fixed input and g as the fixed output to reach.