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The way chemists understand how molecules interact

On the one hand, the traditional chemical intuition tends to localize
electrons around the cores in the real three-dimensional space.

Examples: Lewis’ electron pairs, Langmuir’s octet rule, Pauling’s
classification of bounds (covalent, ionic), resonating structures, shells.
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The wave function of a system in Quantum Mechanics
On the other hand, a quantum system of N electrons is characterized by
its 3N-dimensional wave function, allowing electrons to be delocalized
over the whole space:

Ψ : R3 × . . .× R3︸ ︷︷ ︸
N times

−→ R.

Figure : it is the value of a wave function associated with the electron of an
hydrogen atom in the plane perpendicular to the angular momentum vector.
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Motivations for computing maximal probability domains
Quantum Chemistry tries to reconnect the traditional chemical vision
with the results of accurate quantum mechanical calculations.

Goal: find a clear and simple way to divide the space in significant
regions of chemical and physical meaning.

Examples: minima of radial density (Parr), the model of loges (Daudel),
atoms in molecules (Bader), basins of the electron localization function.

Figure : the electron localization function (ELF) of a 12-electron quantum dot.
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Motivations for computing maximal probability domains
Idea: a solution is to remove the problematical high-dimensionality of
the wave function by averaging correctly over the positions of electrons.

Maximal probability domains seems to be one rigorous entry point to
recover standard chemical concepts from wave functions in the real space.
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The probability to find a number of electrons in a domain

Let us consider:
a quantum system of N electrons completely characterized by its wave
function:

Ψ : R3 × . . .× R3︸ ︷︷ ︸
N times

−→ R;

a fixed number ν ∈ {0, . . . ,N} of electrons;
a given three-dimensional domain Ω ⊆ R3.

The probability pν(Ω) to find ν electrons in the spatial domain Ω is

pν(Ω) =

(
N
ν

)∫
Ω× . . .× Ω︸ ︷︷ ︸

ν times

× (R3\Ω)× . . .× (R3\Ω)︸ ︷︷ ︸
N−ν times

|Ψ|2.

We can thus define a shape functional pν : Ω 7−→ pν(Ω).
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MPDs are the solutions of a shape optimization problem
Goal: we are searching for the domains maximizing the probability pν
because they give a simple partition of the real space, from which we can
recover chemical informations on the system (symmetries, interactions).

Ω

pν (Ω)

Ωoptimal

pν (Ωoptimal) = max
Ω

pν (Ω)

Optimization
=⇒

of the shape

Job: we are interested in the theoretical and numerical study of this
shape optimization problem, and also on the implementation of an
efficient algorithm to compute these maximal probability domains.
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The theoretical and numerical analysis of the problem
An open theoretical question: the mathematical existence and
regularity of a maximizer to the shape optimization problem:

sup
Ω⊆R3

pν (Ω) .

Direct method from Calculus of Variations:
Introduce a class of admissible sets Aadm among domains of R3.
Consider a minimizing sequence pν(Ωi ) −→i→+∞ supΩ pν(Ω).
Define a topology on Aadm to get the compactness of a sequence
(Ωi → Ω∗) and the continuity of the functional (pν(Ωi )→ pν(Ω∗)).
Ensure the regularity and admissibility of the maximizer Ω∗ ∈ Aadm.

Concerning the numerical analysis:
How to deform a domain into a new one in order to increase the
probability (concepts of shape derivative and shape gradient)?
How can we represent the domain in order to handle the possible changes
of topology in the evolution of the interfaces (level-set methods)?
How can we discretize the domain efficiently to reduce the numerical
errors and the computation time (techniques of adaptive mesh)?
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The concept of shape derivative through an example
Question: how can we deform a domain to increase the functional?
What is a small perturbation of a domain?

Ωold

Ωnew

Idea: identify the deformation of domains by their images through maps.

Ωold

u : R3 −→ R3

u(Ωold) := Ωnew
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The concept of shape derivative through an example
We can thus work on the maps u : R3 → R3 (functional analysis) instead
of dealing with domains (no topology on the subsets of R3).
No deformation: it is the identity map Id : x ∈ R3 7−→ x ∈ R3.

Ω

Id : R3 → R3

Ω

A small deformation: it is a perturbation θ : R3 → R3 of the identity.

Ω

Id+ θ : R3 −→ R3

(Id+ θ) (Ω)
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The concept of shape derivative through an example

An example: let f : R3 → R and consider the shape functional:

F : Ω 7−→ F (Ω) :=

∫
Ω

f (x) dx.

To handle with the deformations, we introduce the modified functional:

F̃ : θ 7−→ F̃ (θ) :=

∫
(Id+θ)(Ω)

f (x) dx.

Shape derivative of F : a first-order Taylor expansion of F̃ in θ = 0.

F̃ (θ) = F̃ (0) + D0F̃ (θ) + o (θ) we want
m > F̃ (0) =

∫
Ω

f∫
(Id+θ)(Ω)

f =

∫
Ω

f +

∫
∂Ω

f θn + o (θ) for small θ
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The concept of shape derivative through an example

Cauchy-Schwarz inequality: optimal bound for the term we maximize∫
∂Ω

f θn 6

√∫
∂Ω

f 2
√∫

∂Ω

θ2n,

where the equality holds if and only if θn = tf where t > 0.

Shape gradient: best local choice of perturbation θ(x) = tf (x)n∂Ω(x)
a priori defined only for any x ∈ ∂Ω and extended to the whole space∫

(Id+θ)(Ω)

f =

∫
Ω

f + t
(∫

∂Ω

f 2
)

+ o(t) >
∫

Ω

f ,

for sufficiently small t > 0.

Physical interpretation: the shape gradient defined on the boundary
gives the intensity at which we have to push the surface along the normal
in order to (locally) increase the functional in an optimal way.
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The evolution of interfaces with a level-set method
The level-set method consists in representing implicitly the interface ∂Ω
as the zero of a continuous map Φ : R3 → R:

∂Ω =
{
x ∈ R3, Φ(x) = 0

}
et Ω =

{
x ∈ R3, Φ(x) < 0

}
.
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The evolution of interfaces with a level-set method
Advantages: this representation does not depend on the dimension,
handles very-well the changes of topology, gives access to the
geometrical properties of the surface (normal, fundamental forms) and
extends them naturally to the whole space:

∀x ∈ ∂Ω, next
∂Ω (x) =

∇Φ(x)

‖∇Φ(x)‖
and H∂Ω(x) = div

(
∇Φ(x)

‖∇Φ(x)‖

)
.

Inconveniences: no explicit control of the surface (preservation of area,
volume). How can we replace the deformation of a domain by the
evolution of a level-set function?

Assume that the shape Ω(t), implicitly represented by the level-set
function ϕ(t, •), is evolving according to a vector field θn(•) ∇ϕ(t,•)

‖∇ϕ(t,•)‖ ,
namely the shape gradient from the previous analysis.

ẋ(t) = θn(x(t))
∇ϕ(t, x(t))

‖∇ϕ(t, x(t))‖
and ϕ(t, x(t)) = 0.
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extends them naturally to the whole space:

∀x ∈ ∂Ω, next
∂Ω (x) =

∇Φ(x)

‖∇Φ(x)‖
and H∂Ω(x) = div

(
∇Φ(x)

‖∇Φ(x)‖

)
.

Inconveniences: no explicit control of the surface (preservation of area,
volume). How can we replace the deformation of a domain by the
evolution of a level-set function?

Assume that the shape Ω(t), implicitly represented by the level-set
function ϕ(t, •), is evolving according to a vector field θn(•) ∇ϕ(t,•)

‖∇ϕ(t,•)‖ ,
namely the shape gradient from the previous analysis.

ẋ(t) = θn(x(t))
∇ϕ(t, x(t))

‖∇ϕ(t, x(t))‖
and ϕ(t, x(t)) = 0.
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The evolution of interfaces with a level-set method
Differentiation of ϕ(t, x(t)) = 0 with respect to t gives:

∂ϕ

∂t (t, x(t)) + ẋ(t).∇ϕ(t, x(t)) = 0
⇓

∂ϕ

∂t (t, x(t)) + θn(x(t))
∇ϕ(t, x(t))

‖∇ϕ(t, x(t))‖
.∇ϕ(t, x(t)) = 0

⇓
∂ϕ

∂t (t, x(t)) + θn(x(t))
‖∇ϕ(t, x(t))‖2

‖∇ϕ(t, x(t))‖
= 0

⇓
∂ϕ

∂t (t, x(t)) + θn(x(t))‖∇ϕ(t, x(t))‖ = 0

Hence, we have to solve the following partial differential equation which
is an Hamilton-Jacobi type of equation:

∂ϕ

∂t (t, x) + θn(x)‖∇ϕ(t, x)‖ = 0 t > 0, x ∈ R3.
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An algorithm using the techniques of adaptive mesh
1 Generate an initial mesh adapted to the initial domain Ω0 and its

associated level-set function:

ϕ0 : x ∈ R3 7→ d(x,Ω0)− d(x,R3\Ω0).

2 Adapt the mesh in order to compute the shape gradient of the
probability at the point of the surface. Extend it to the whole mesh.

3 Solve the Hamilton-Jacobi equation on a small interval [0,∆t] and
adapt the mesh to the new surface:

∂Ω1 = {x ∈ R3, ϕ(∆t, x) = 0} and Ω1 = {x ∈ R3, ϕ(∆t, x) < 0}.

4 Reduce the numerical errors by modifying the level-set function so
that:

‖∇ϕ1‖ = 1.
5 Get back to the first step if the shape gradient is not zero on the

boundary and/or if the probability stops increasing.
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Conclusion: contributions, difficulties and challenges

Contributions:
Derivation of the second-order shape derivative of the probability in the
particular case of a single Slater determinant wave function;
Evaluation of the first-order shape derivative of the probability in the
general case of multi-determinant wave functions;
2D and 3D programs in Matlab to study very simple molecules.
Improvement of the 3D Program in C with adaptive mesh techniques.

Difficulties/Challenges:
Problem of numerical convergence of the domain/Set up a Newton shape
optimization method;
Quantify the numerical errors of the algorithm/Accurate choice of the
numerical box;
Parallelize the calculations/Generalize the algorithm to the general case;
Sensitivity to the initialization/Study the chemical informations of MDPs.
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Thank you for your attention. Do you have any questions?
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