
Mathematical Engineering Department

Report on waves and surfing

Partial Differential Equations, Numerics and Control

Author:

Dalphin Jérémy

Internship supervisors

• at the Ecole Nationale Supérieure des Mines de Nancy :

Henrot Antoine

• at the Basque Center for Applied Mathematics :

Zuazua Enrique

Barros Ricardo

Abstract

The recent development of the Basque Center for Applied Mathematics (BCAM) leads it to
collaborate in a project with Instant Surfing. This association wants to build an efficient wave
maker with a moving bottom underwater.

The shape of a bottom that would create the highest waves has to be found. This report
presents the chosen model : the forced Korteweg and de Vries equation (fKdV). Then, it
describes the algorithm of the design optimization process.

Finally, the results of the program are investigated for various bottoms. The behaviour of
the waves, the tuning of some parameters, the physical relevance of the model and the errors
committed via the algorithm are analysed.

2

Contents

Abstract 2

Acknowledgements 6

Introduction 7

I Presentation of the internship : where did it take place ? From
which expectations did it come ? What form does it take ? 9

1 Environment of the internhip : a new research center collaborating with a
local project 10
1.1 The Basque Center for Applied Mathematics : a new structure emerging from

a dynamical process . 10
1.2 Instant Surfing : a local project about the elaboration of a wave maker 11
1.3 The internship at the boundary between two expectations 11

2 Context of the internship : the elaboration of an efficient wave maker for
surfing 12
2.1 The need of wave makers for surfing competitions 12
2.2 The constraints involved in the construction of a wave maker 13
2.3 The prototype developped by Instant surfing : a moving bottom underwater . 13

3 Subject of the internship : can mathematics and numerical simulations
give some answers about the efficiency of such a wave maker, especially
concerning the shape of the bottom ? 14
3.1 Beyond experiments, the need of mathematics and numerical simulations . . . 14
3.2 Statement of the report topic . 15
3.3 Complexity of the problem . 15

II State of the art 16

4 A model adapted to the wave maker 17
4.1 The wave equation . 17
4.2 The Korteweg-de Vries equation . 18
4.3 The solitary wave . 18
4.4 The forced Korteweg-de Vries equation . 20

3

5 Computation of the forced KdV equation 22
5.1 Difficulties encountered with the finite difference schemes 22
5.2 Difficulties encountered with spectral methods 23
5.3 Differentiate an equation to gain numerical stability 23

6 The effects of the blockage coefficient and of the shape in the generation of
the solitary waves 24
6.1 The effects of the blocage coefficient . 24
6.2 The effects of the shape . 24

III The forced Korteweg-de Vries model 25

7 Derivation of the forced KdV model 26
7.1 Establishment of Euler equations for a free surface 26

7.1.1 Hypothesis for the description of a continuous environment 26
7.1.2 A quick re-establishment of the Navier Stokes equations 27
7.1.3 The boundary conditions . 28
7.1.4 The Euler equations . 28

7.2 Nondimensionalization and scaling of the equations 29
7.2.1 Nondimensionalization of the variables 29
7.2.2 Scaling of the variables . 30
7.2.3 A unidirectional and long-time scaling model 31

7.3 From asymptotic development to fKdV model 32
7.3.1 Asymptotic development as ε −→ 0 . 32
7.3.2 The emergence of the fKdV model . 33

8 Computation of the forced Korteweg and de Vries equation 35
8.1 A Crank-Nicholson scheme for time . 35
8.2 A finite difference scheme for space . 36
8.3 A discretization of the non-linearity adapted to the scheme 36
8.4 Resolution of the system with a sparse matrix 37
8.5 A filter to assume the correct boundary conditions 38

9 Validation of the numerical resolution of the forced KdV equation 40
9.1 The exact analytic form of the solitary waves generated 40
9.2 Description of the KdV algorithm . 42
9.3 Performance of the KdV algorithms . 43

IV The shape optimization problem 45

10 Formulation of the design optimization problem 46
10.1 Find the bottom that creates the highest wave 46
10.2 The dual continuous approach to evaluate the gradient of the functionnal . . . 47

10.2.1 Searching for a shape derivative of the functionnal 48
10.2.2 The partial differential equation followed by ζ 48
10.2.3 The emergence of the adjoint . 49

10.3 The computation of the adjoint problem . 50

4

11 The numerical approach using Usawa algorithm 53
11.1 Introduction of the Lagrangian . 53
11.2 Behaviour expected from the algorithm . 54
11.3 Description of the algorithm . 54

11.3.1 Initialization . 54
11.3.2 Step k + 1: re-initialization of bk . 56
11.3.3 Choice of γ . 56
11.3.4 Step k + 1: re-initialization of λk . 57
11.3.5 Choice of κ . 57
11.3.6 Stop criteria . 59

11.4 Results obtained from the algorithm . 59

12 The influence of parameters 60
12.1 The role of the Froude number . 60

12.1.1 Physical meaning of the Froude number 60
12.1.2 The supercritical case to enhance the efficieny of the wave maker 63

12.2 Some energetic considerations and weakness of the fKdV model 64
12.2.1 A comparison between the cube and the optimal profile 64
12.2.2 The weakness of the model : the inviscid assumption 64
12.2.3 The influence of the shape on the drag coefficient 65

12.3 The influence of the admissible set of solutions 66

Conclusion 69

V Annexes 71

13 The Zabusky and Kruskal historical simulation of KdV equation 72
13.1 Description of the phenomena . 72
13.2 Description of the Matlab code . 72
13.3 Matlab code . 73

14 The Whitham and Fornberg simulation of the KdV equation 76
14.1 Description of the Matlab code . 76
14.2 Matlab code . 77

15 The Matlab code of the optimization algorithm 79
15.1 The fKdV solver . 79
15.2 The adjoint solveur . 80
15.3 Evaluation of the functionnal . 82
15.4 Evaluation of the lagrangian . 82
15.5 Computation of the shape derivative of the functionnal 83
15.6 Computation of the lagrangian derivative . 83
15.7 Computation of the positive projector . 83
15.8 Optimization algorithm . 84

15.8.1 Initialization part . 84
15.8.2 Temporal loop . 85

5

Acknowledgements

First, I want to thank strongly my tutors Enrique Zuazua and Ricardo Barros for the integra-
tion within the team, the availability and the advice they gave me throughout this wonderful
work experience.

Finally, I wish to express my gratitude to all BCAM team for their good humor, their
dynamism and their warm hospitality.

6

Introduction

Personal career

Student at the Ecole Nationale Supérieure des Mines de Nancy, I decided to experience a gap
year during the period 2009-2010. This choice would allow me to step back on my career
plan, to think about the guidelines to make for my future jobs and to gain work experience
through various internships in the field of research in applied mathematics.

In 2008, I followed the first year of Master degree in Mathematics at the Henri Poincaré
University of Nancy in parallel with the courses of the Mathematical Engineering Department
at the Mines. My knowledge is mainly specialized around two axes : probability and partial
differential equations. But it has also diversified into algebra, optimization and numerical
simulation.

In September 2009, I joined the Centre de Recherche et Innovation Gaz et Energies Nou-
velles (CRIGEN) of the gas company GDF SUEZ in order to achieve a six-month internship.
In march 2009, I have joined the Basque Center for Applied Mathematics (BCAM) for an-
other internship in Bilbao, Spain. I was integrated to the research line Partial Differential
Equations, Numerics and Control directed by Mr. Zuazua.

Subject of the internship

BCAM is a new research center that aims to become an international reference in the field of
applied mathematics. Promoting its skills to local companies during workshops, a collabora-
tion with Instant Surfing emerges from this dynamical process. The basque project is directed
by professional surfers who try to elaborate fine technologies for the art of riding waves.

Using their wide experience in water, they were granted a patent on a wavemaker prototype
of a new type. Although most of the current machines are generating waves by dropping
accelerated water in a pool, this one is based on the translation of a bottom underwater.
Instant Surfing is now seeking for the most efficient one : the wave maker has to create the
highest stable wave as possible.

During my six-month internship in BCAM, I studied the forced Korteweg-de Vries model
(fKdV) in order to give answers about how the wave height, shape and stability are ruled by
bottom parameters such as speed, shape and water depth. Then, I developed an optimization
algorithm so as to obtain an optimal bottom shape that could improve the wave maker.
Finally, I investigated the pertinence of the results obtained. The table below sums up
monthly the principal steps of my internship.

7

March Elaboration of the subject
April Bibliographic work
May Studying the forced KdV model
June Elaborating the optimization algorithm
July Convergence of the algorithm
August Writing the report

Layout of the report

First, this report will present my internship environment : BCAM as a new structure emerging
from a dynamical research process and from collaborations with local companies. I will
develop the context and the challenges of the subject : giving some mathematical clues about
the elaboration of an efficient wave maker including a clearly statement of the problematic.

A precise state of the art will be done concerning the elaboration of a wave maker : the
choice of the forced KdV model, the computation of the fKdV equation, a blockage coefficient
and bottom shape effects in the generation of waves.

Then, under some usual hypothesis made in the context of water waves, I will derive from
Euler equations the forced KdV model and discretize the equation at stake. Then, I will
present the results obtained and justify my choices in the modelization.

Finally, I will define mathematically the optimization problem : specifying, justifying
the functionnal to minimize and the set of admissible solutions chosen. I will describe the
optimization algorithm and how the parameters have to be tuned in order to get convergence.
I will finally conclude on their influence in the process.

8

Part I

Presentation of the internship : where
did it take place ? From which

expectations did it come ? What form
does it take ?

9

Chapter 1

Environment of the internhip : a new
research center collaborating with a
local project

First, we briefly present BCAM as a growing research center, then Instant surfing as a local
project specialized in the art of riding waves, and finally my internship as the concretization
of a collaboration between the two entities.

1.1 The Basque Center for Applied Mathematics : a

new structure emerging from a dynamical process

Through the Department of Education, Universities and Research, the Basque Government
decided to set up a new entity in 2007 : Ikerbasque. This Basque Foundation for Science was
charged with three objectives :

• the attraction and recovery of front-rank researchers ;

• the creation of new research centers with standards of excellence ;

• social outreach for science.

Following the second issue, Ikerbasque instructed Mr. Zuazua to study the viability of a
mathematical research center in the Basque Country. In 2008, the Board of Trustees decided
to concretize the idea and created such a structure as part of the Basque Excellent Research
Centres program.

The Basque Center for Applied Mathematics (BCAM)1 emerged with the commitment to
put the Basque Country firmly on the international map in terms of cutting edge research
and a strong cooperative spirit. The center started operations recently in September 2008
and is located in Bilbao, Spain.

Formed by a group of highly trained researchers and an extensive network of interna-
tional excellence, BCAM aims to become an international reference in the field of applied
mathematics, promoting scientific and technological developments worldwide.

1http://www.bcamath.org/public home/ctrl home.php

10

1.2 Instant Surfing : a local project about the elabora-

tion of a wave maker

For surfing lovers, defining the perfect wave has always been a non-trivial problem. In the
context of surfing competition, the ability to generate always the same accurate wave is
certainly of first interest. Wave pools aim to solve that problem, by controlling all the elements
that go into creating perfect surf. However, there are only a handful of wave pools that can
simulate really good surfing waves, owing primarily to construction, operation costs and
potential liability.

That is why some engineers from Donostia decided to set up a project called Instant
Surfing2. These surfing lovers try to elaborate fine technologies for the art of riding waves.
More precisely, it consists in the construction of a wave maker that would generate the same
accurate wave in order to develop competition in pools. Using their wide experience in water,
they recently obtained a patent about a wave maker of a new type. After some years of
investments, they would like to concretize their project by opening an effective surfing center
in the region of San Sebastian.

1.3 The internship at the boundary between two ex-

pectations

Research in applied mathematics concerns the development of techniques used in the appli-
cation of mathematical knowledge to other domains. That is why it appears of first interest
for companies who definitively need the researchers’ experience to innovate more and always
solve new problems arising from all areas of industry.

Therefore, BCAM wants to promote itself to companies as an excellent center whose
research problematics are closely related to the industrial ones. In order to keep abreast of
the crucial issues in fluid dynamics, the center organized a workshop in February 2010 where
lots of local firms where invited.

Instant Surfing presented its work. The engineers who built the wavemaker had no real
experience in wave theory and in numerical simulation. As they would like to concretize
their project, they ask BCAM about some mathematical answers about the efficiency and the
improvement of their wave maker.

The internship subject was created to study the wave maker mathematically in order to
give some answers about Instant Surfing expectations. I was integrated to the research line
Partial Differential Equations, Numerics and Control directed by Mr. Zuazua.

2http://instantsurfing.net/

11

Chapter 2

Context of the internship : the
elaboration of an efficient wave maker
for surfing

We present the need of wave makers for surfing competitions, their current operating principle
and the constraints under which they are subject. Then, we describe the new prototype
elaborated by Instant surfing and the questions arising from it.

2.1 The need of wave makers for surfing competitions

Those involved in surfing competitions should be able to surf exactly in the same conditions
in order to satisfy a certain equality in the evaluation of performances. This is clearly not
possible in the sea where waves depends on many uncontrollable parameters like weather,
wind, stream,...

That is why the elaboration of a wave maker in a pool seems to be a reasonnable answer
to this need. However, before debating about the way to build such a machine, a problem
arises when trying to define a wave for surfing competition. It mainly depends of :

• its shape that must ensure its stability ;

• its speed that allow its propagation ;

• its height that must be sufficiently high.

Moreover, we can distinguish also two completly different aspects in the generation of
surfing waves :

1. The formation of the wave. Accelerated water is generally dropped in a pool in order
to generate a solitary wave : a very stable gravity wave propagating without changing
its shape and ruled by only one parameter : its height.

2. The breaking of the wave. The depth of the pool ground is usually reduced in order to
create the shoaling effect[11] : a slope going from the ground to the water surface will
increase the wave height and will break the wave at last.

The purpose of this report will be devoted to the first aspect of the wave maker.

12

2.2 The constraints involved in the construction of a

wave maker

In order to build an efficient wave maker, many problems quickly arise in the running of such
a machine. Although the first preoccupation of surfers is the quality of the wave generated,
economical constraints must also be taken in account. First, the security of the surfers in the
pool must be ensured by the wave maker.

Then, a wave maker consumes a lot of energy : lifting water each time one needs to
produce a wave is very greedy energetically speaking. Indeed, the volume of water lifted is
equal to the volume of the deformation produced. This implies even more energy if the wave
height is high.

Finally, the depth of the pool is very important in the propagation of waves. Deeper is the
pool and higher are the waves that can be propagated. This implies an extra cost for filling
such a pool with water. These two economical aspects are fundamental in the viability of a
surfing center and they often are the reasons of its closure.

2.3 The prototype developped by Instant surfing : a

moving bottom underwater

Instant surfing decided to use another identified phenomena to generate waves : a bottom
is translating under the water and creates a solitary wave upstream the disturbance. This
method should be less greedy in energy than the previous one. However, the security is not
ensured in this case.

In order to secure the wave maker, Instant Surfing also decided to modify the breaking
wave principle. A slope parallel to the bottom rails gets from underwater to an artificial
beach. This has two natural effects [11] :

• The adherence of the ground : the waves generated in front of the bottom and perpen-
dicularly to the beach tend to turn parallely to it.

• The shoaling effect : the waves increase in height and breaks at last.

Figure 2.1: The wave maker works by moving a bottom underwater which generates solitary
waves upstream that tend to turn and break parallely to the beach where surfers are safe.

13

Chapter 3

Subject of the internship : can
mathematics and numerical
simulations give some answers about
the efficiency of such a wave maker,
especially concerning the shape of the
bottom ?

Now that Instant surfing patented their wavemaker prototype, we describe the new needs of
the project where BCAM can bring some answers. Then, a clear statement of the problematic
will be made and finally we will explain the complexity of the problem.

3.1 Beyond experiments, the need of mathematics and

numerical simulations

After some years of expensive investments, Instant Surfing was granted a patent for their
wavemaker prototype. However, the real concretization of the project would be the construc-
tion of a real surfing center in the region of San Sebastian. Therefore, the engineers started
to think about the possible commercialization of their wave maker.

This implies some studies about the security, the viability and the efficiency of their
system. For example, surfers must not get wounded by the moving bottom. Moreover, the
cost in energy, water and maintenance must lead to a reasonnable entrance price.

Finally, the wave height generated is still too small for surfing competitions. In order to
improve again the wave maker, two possibilities are considered :

• Instant Surfing can spend more money in experiences that should enhance the wave-
maker performances. The engineers pratical skills are of fundamental importance in the
tuning of the waves generated.

• BCAM can offer them some mathematical clues about the efficiency of their wavemaker
completed by some numerical simulations, a cheaper way to better the current prototype.

14

3.2 Statement of the report topic

The first objective of the report will try to investigate mathematically the relations between
the wave parameters and the bottom ones. More precisely, an accurate model is needed in
order to obtain a deeper understanding about how the height, the shape, the speed and the
stability of the generated wave is linked to the length, the height, the shape, the speed and
the depth of the moving bottom.

However, we will concentrate mainly on the following design optimization problem : how
the shape of the bottom can affect the height of the wave in order to maximize it ? Using
the model, numerical simulations and an optimization algorithm will be developped in order
to obtain pertinent results on that precise question.

3.3 Complexity of the problem

First of all, this design optimization approach is very new. Indeed, although many models
from water waves theory has been tremendously studied, very few experiments have been
done concerning some design optimization problems. The only paper found in the litterature
that studies the shape effects of submerged objects in the generation of solitary waves is D.
Zhang and A.T. Chwang’s one [5].

Then, the problem lies at the frontiers of three domains : mathematics, physics and
numerics. The chosen model must be as close as possible from the physical observations
whereas simplicity is required for the computation and the mathematical study.

Finally, the validity of the results obtained via the algorithm is not obvious. Indeed,
in order to compute the optimization problem, a discretization of the continuous model is
necessary. Convergence, stability and consistency of the algorithm are non trivial questions
difficult to prove.

15

Part II

State of the art

16

Chapter 4

A model adapted to the wave maker

We recall here the main properties of the wave equation and how useful they are in the
context of wave makers. Then, we present the Korteweg-de Vries equation arising in many
descriptions of real wave propagation, and one of its solution recovering almost the desired
properties : the solitary wave. Finally, we introduce the forced Korteweg-de Vries equation.

4.1 The wave equation

The simplest model for one-dimensional water motion a mathematician can think of is the
wave equation. Restricted to right-going waves at speed c0 for our purpose, the water elevation
ζ is the famous D’Alembert solution :

∂ζ

∂t
+ c0

∂ζ

∂x
= 0

ζ(x, 0) = ζ0(x)

=⇒ ∀x ∈ R, ∀t ∈ R+, ζ(x, t) = ζ0 (x− c0t)

This model has a lot of very useful properties for a wave maker :

- The speed of the wave c0 can be controlled because it is determined by the water depth
denoted h0. Indeed, the relation c0 =

√
gh0 holds where g is the gravitaty acceleration.

- There is no interaction between two waves of this type. Indeed, the wave equation is
linear and the superposition principle holds1.

- As the wave do not change its shape when propagating, the wave profile is just a shift
of the initial one generated.

Unfortunately, this model is valid only for long waves of small amplitude. Altought it is
used for describing the spreading of tsunamis [14] because the ocean depth is very high com-
pared to the amplitude of the wave, it cannot be used for the description of a wave generated
in a pool that must be sufficiently high for surfing. Indeed, more physical and complex effects
always appear. Normal waves would tend to either flatten out due to dispersion or steepen
and topple over due to the non-linearity.

1The superposition principle says that if ζ1 and ζ2 are solutions of the wave equation, then ζ1 + ζ2 also.

17

4.2 The Korteweg-de Vries equation

The Korteweg-de Vries (KdV) equation is the simplest relation that incorporates both nonlin-
earity and dispersion [10]. In fact, it often occur in the description of real wave propagation.
Consider a linear one-dimensional wave motion with dispersion. As waves of different wave
number k propagate at different velocities c, the dispersion relation must take the form :

ω (k) = kc
(
k2
)

since only odd derivative of the wave elevation ζ are allowed. Let’s suppose that for infinitely
long waves (k → 0), there exists a non-zero speed of propagation c0, then we have in first
order of approximation the relation :

ω

k
∼ c0 − ϑk2

and usually long waves travel the fatest, so ϑ > 0. This approximate dispersion relation
is then clearly obtained by inserting the harmonic wave solution (x, t) 7→ ei(kx−ωt) in the
dispersion wave equation :

∂ζ

∂t
+ c0

∂ζ

∂x
+ ϑ

∂3ζ

∂x3
= 0

Moreover, if the medium in which the propagation is occuring is a classical continuum,

then the time evolution will be given by the material derivative
D

Dt
=

∂

∂t
+u

∂

∂x
. If these two

effects, dispersion and nonlinearity, are to balance, we should obtain the relation :

∂ζ

∂t
+ c0

∂ζ

∂x
+ α

[
ζ
∂ζ

∂x
+ ϑ

∂3ζ

∂x3

]
= 0

where α is a small parameter measuring the weak non-linearity and long waves. Thus, we
have the equation :

∂ζ

∂τ
+ ζ

∂ζ

∂ξ
+ ϑ

∂3ζ

∂ξ3
= 0 ξ = x− c0t, τ = αt

which is the KdV equation for small amplitude long waves, valid in an appropriate region of
the (x, t)-plane defined by x− c0t = O (1) and t = O (α−1), as α→ 0.

4.3 The solitary wave

In 1834, John Scott Russell first observed the ”Great Wave of Translation” in the Glasgow
canal while he was conducting experiments to determine the most efficient design for canal
boats. Intrigued by something very peculiar in a seemingly ordinary event, he decided to
perform some laboratory experiments, generating what he called solitary waves by dropping
a weight at one end of a water channel.

However, Scott Russell’s observations of the single localised entity could not be explained
by the existing water-wave theories. Challenging about its existence the mathematical com-
munity influenced by Airy and Stokes who had difficulty to accept the validity of his exper-
iments, it took half a century to Rayleigh and Boussinesq to obtain a formula for the wave

18

and derive it from the Navier Stokes equation [7]. Korteweg and de Vries finally unified the
approach in 1895 showing that the solitary wave is one solution of the KdV equation :

ζ (x, t) = a sech2

[
1

2h0

√
3a

h0

(
x− c0

(
1 +

a

2h0

)
t

)]
where h0 is the water depth and a the wave amplitude.

Figure 4.1: Profile of a solitary wave solution of the KdV equation.

All the key properties of the solitary wave were hidden in Russell’s Report on Waves until
Zabusky and Kruskal re-discovered the unusual interactions between this waves [12] called
solitons and leading to a broad development on integrable systems like the elaboration of the
scattering method.

- When generated, a solitary wave is very stable and can travel over very large distances
without changing its initial shape. This property is very useful for a wave maker.

- Higher waves travel faster because we have the relation c2 = g (a+ h0) where a is the
amplitude of the wave, h0 the undisturbed water depth and g the gravity acceleration.

- Although there are interactions between two solitary waves due to the nonlinearity, they
will never merge and they seem not to interact with each other.

With an accurate balance between dispersion effects that tend to spread out the wave
profile, and nonlinearity ones that create shocks, the KdV equation has a more physical and
stable solution which almost recover all the properties found in d’Alembert solution. That is
why a wave maker often tries to generate such a solitary wave ruled by only one parameter :
its amplitude.

19

4.4 The forced Korteweg-de Vries equation

Solitary waves can be generated by a pressure or a bottom disturbance.

- A ship can apply a moving pressure which acts as a forcing term and generate waves.
This is how Russell discovered the solitary wave.

- Like in Russell’s experiments, a pressure bump appears to be the most efficient way to
produce a soliton. This is how most of the wave maker are working actually but it cost
a lot of energy.

- Submarine earthquake can also generate solitary waves by a bottom bump. It usually
has catastrophic consequences due to the stability of the wave generated.

- A moving bottom can generate periodically a succesion of solitary waves upstream the
disturbance. Less energetically greedy, this is the way that has been chosen by Instant
Surfing to generate solitary waves.

The last phenomenon has been identified and studied by Wu in [20]. A forcing disturbance
(x, t) 7→ b (x− Ut) is moving steadily under a h0 water depth in shallow water. Its speed
U must be taken near the transcritical velocity c0 =

√
gh0 to observe solitons. Under this

condition, the bottom b always generate periodically a succession of solitary waves advancing
upstream the disturbance while a train of weakly nonlinear and weakly dispersive waves
develops downstream of a region a depressed water surface trailing just behind the disturbance.

Figure 4.2: Numerical simulation of the forced KdV equation highlighting the three regimes
created by the wave maker : cnöıdal-like waves downstream, depressed water surface and
solitons upstream.

20

The generalized Boussinesq (gB) model is usually used for describing such bottom or
pressure disturbances. Although it is simpler than the full Euler equations, it is still difficult
to explore the basic mechanism underlying the phenomenon. A simpler version is develop
for bidirectional waves in [3]. However, we are here in presence of unidirectional phenomena.
Derived from gB by Wu in [20], it appears to be ruled by the forced Korteweg-de Vries (fKdV)
equation where the wave elevation ζ satisfies the following relation in the frame of the bottom
b (x− Ut) = b (ξ) :

− 1

c0

∂ζ

∂t
+

[(
U

c0

− 1

)
− 3

2h0

ζ

]
∂ζ

∂ξ
− h2

0

6

∂3ζ

∂ξ3
=

1

2

∂b

∂ξ

ζ (ξ, 0) = ζ0 (ξ)

The initial value problem for the fKdV equation has been studied in [21] and in [9] when
tension effects are taken in account. Let T > 0 be given. For any initial data ζ0 in L2 (R)
and for any forcing term f in L2 (−T, T ;L2 (R)), the previous initial value problem admits a
unique solution ζ in a certain space Y T

0,b and the corresponding mapping is analytic.

We define for s > −1 and b >
1

2
the space Ys,b as the completion of the space S (R) of

tempered test functions with respect to the norm

‖f‖2
Ys,b

=

∫ +∞

−∞

∫ +∞

−∞

(
1 + |τ − ξ3|

)2b
(1 + |ξ|)2s |f̂ (ξ, τ) |2dξdτ

where f̂ denotes the Fourier transform of f . For any given T > 0, we define the following
restriction to (−T, T) of a function in Ys,b. We define the equivalence relation in Ys,b such
that v ∼ w ⇔ ∀t ∈ (−T, T) , v(., t) = w(., t). We call Y T

s,b the set of equivalence classes which
is the appropriate space where the solution of the forced KdV equation lives.

21

Chapter 5

Computation of the forced KdV
equation

We present the main schemes developped in order to solve the forced KdV equation. We show
how difficulties are arising from the discretization of the third derivative and of the forcing
term. We justify our choices for the scheme.

5.1 Difficulties encountered with the finite difference

schemes

As it is well explained in [16], when discontinuous or near-discontinuous features are present in
a physical system such as the forced KdV equation, it is possible for finite difference centered
schemes to perform badly as they do not take account of the direction of propagation.

Moreover, the third order derivative of the fKdV equation implies high accuracy of the
space discretization if it does not want to be polluted by numerical dispersion. Finally, the
forcing term in the fKdV equation breaks all the symetries that could be exploited in the
computational process such as the symplectic structure.

However, our goal here is to build a scheme that allow a fast resolution in order to in-
corporate it in the loop of the optimization algorithm. That is why simplicity is required
for a fast computation time but also for an easier study of the properties expected from the
discretization.

In [12], Zabusky and Kruskal developped a leap-frog scheme for time discretization and
a finite difference scheme for space discretization that conserves mass and energy to second
order. Unfortunately, the scheme is stable with a CFL condition of the form ∆t = O (∆ξ3).
As we want to evaluate the free surface elevation ζ for long time and incorporate the fKdV
resolution in a loop of a design optimization algorithm, such a condition imposes too much
calculations.

In [16], Walkley uses finite difference schemes of higher order of approximation for the
space discretization. However, to avoid the CFL condition, he builds an implicit scheme
for the time discretization which is very complicated for our purpose and is described in [17].
Although the fKdV equation seems to be stiff, the simplicity of the general behaviour suggests
that an easier scheme exists.

22

5.2 Difficulties encountered with spectral methods

In [10], Johnson presents the spectral methods as a better alternative to the finite difference
schemes. In [19], Fornberg and Whitham developped a clever scheme for the computation of
the KdV equation, using the discrete Fourier transform.

In [15], Trefethen also took the Fourier transform of the equation and uses the method
of integrating factors to allow larger time step for stability. He then set up a fourth-order
Runge-Kutta method [18] for the time integration.

However, after a certain time, the cnöıdal waves leaving from the left side would re-enter
to the right side and pollute the solitary waves generated. Indeed, a scheme based on Fourier
transform assumed that the function is periodic on the computationnal domain.

Therefore, a big computationnal domain must be taken for long time simulation which
increases drastically the computation time. That is why spectral methods or splitting methods
usually used for more complex equation and described in [8] were too complicated for the
problem.

5.3 Differentiate an equation to gain numerical stability

Finally, we decided to set up a scheme described in [1]. Deriving the fKdV equation in
space seems to introduce a numerical stabilization as only even derivatives now appear in the
equation. We discretize the following equation with a second order accurate finite difference
scheme in space and a Crank-Nicholson scheme in time :

−2

c0

∂2ζ

∂ξ∂t
+ 2(Fr − 1)

∂2ζ

∂ξ2
− 3

2h0

∂2 (ζ2)

∂ξ2
− h2

0

3

∂4ζ

∂ξ4
=
∂2b

∂ξ2
.

Therefore, this scheme has many advantages :

• It does not assume the solution to be periodic in the computational domain ;

• It is an semi-implicit scheme that allow big time step, reducing the computation time ;

• Its simplicity translates the straightforwardness of the general behaviour encountered
in the fKdV model.

23

Chapter 6

The effects of the blockage coefficient
and of the shape in the generation of
the solitary waves

Few results were published on this topic. In [5] and [4], Zhang and Chwang used numerical
simulations of the viscuous Navier Stokes set of equations to study the generation of soli-
tary waves with submerged objects. They confirmed the good accuracy of their simulations
compared to the experiments made by Lee and al. in 1989. They also showed a very good
accuracy of the forced KdV model in its domain of validity.

6.1 The effects of the blocage coefficient

They showed that a blockage coefficient, defined as the ratio of the mid-ship-sectionnal area
to the cross-sectionnal area of the channel, plays a key role in the generation of solitons. In
the monodimensional case, this parameter, denoted δ in the report, is simply the ratio of the
bottom height d to the water depth h0.

The amplitude increases as the blockage coefficient increases. There is a quasi-linear
relation between this two parameters in good agreement with the previous experiments made
on this topic. They also compared their results with the ones described by Wu and in [13].
Inviscid models [13] seems to incorporate the effects of the blockage coefficient as well as
viscuous ones.

6.2 The effects of the shape

They found that the shape of a body under the free surface has a significant effect on the
solitary-wave generation through viscous effects in the boundary layer of the body. In general,
if a change in shape results in increasing the area of the body surface, the viscous effects will
be enhanced and so will the disturbance forcing. Therefore, the amplitude of the solitary
waves increases.

However, they showed that for an inviscid flow, the shape of a body under the free surface
has no real effect on the generation of upstream-advancing solitary waves but has an effect
on the depressed water region and trailing waves when the body length is sufficiently short.
This highlights maybe a weakness of the forced KdV model.

24

Part III

The forced Korteweg-de Vries model

25

Chapter 7

Derivation of the forced KdV model

The Navier Stokes equations for a free surface called Euler equations are re-established here.
The appropriate hypothesis are made to derive the fKdV model from it.

7.1 Establishment of Euler equations for a free surface

7.1.1 Hypothesis for the description of a continuous environment

Let’s consider a fluid in motion, denoting ρ its density, λ the typical length, h0 the water
depth and c0 =

√
gh0 ∼ 3 m.s−1 the speed of classical gravity waves where g ∼ 10 N.kg−1 is

the gravitational acceleration.

Quantity Notation Order of magnitude
Constant density of water ρ ∼ 1000 kg.m−3

Typical wavelength λ ∼ 1 m
Undisturbed water depth h0 ∼ 1 m
Gravitation acceleration constant g ∼ 10 m.s−2

Characteristic speed for waves c0 =
√
gh0 ∼ 3 m.s−1

Of course, we will work with the model of classical physics (no relativist or quantum
effects). This is justified by 1 :{

c0 =
√
gh0 << clight ⇐⇒ 3 m.s−1 << 300 000 m.s−1

hPlanck << ρh0c0λ
3 ⇐⇒ 6.63 10−34 J.s << 3000 J.s

In the usual space, the observator is located in the galilean earth frame. Everyone can perceive
the time in the same way.

The medium is considered continuous when the charateristic dimension of the flow λ is
much more higher than the mean free path of a molecule of the fluid which is the case here.
In these conditions, the function introduced to characterized the fluid are continuous and
differentiable.

1The constant clight is the speed of light and hPlanck the Planck constant.

26

7.1.2 A quick re-establishment of the Navier Stokes equations

Let’s consider a two-dimensionnal fluid characterized by its density ρ assumed to be constant
(which implies that the fluid is incompressible), its speed −→u (x, z, t) = (u(x, z, t), w(x, z, t))
and its pressure P (x, z, t).

Conservation of mass

Considering a fixed and closed volume Σ of surface ∂Σ in our modeling, the variation of mass
d

dt

∫
Σ

ρdV is only generated by a mass flow −
∫
∂Σ

ρ−→u .−→n dS. As Σ is fixed and ρ differentiable,

applying Green-Ostrogradski formula, we get :∫
Σ

[
∂ρ

∂t
+ div(ρ−→u)

]
dV = 0.

As Σ is not specified, the local formulation of incompressibility can be rewriten when ρ is
assumed to be constant:

∂u

∂x
+
∂w

∂z
= 0

Conservation of momentum

Considering Σ, a fixed-closed volume of surface ∂Σ, the variation of momentum
d

dt

∫
Σ

ρ−→u dV

inside the volume is generated by the momentum flow −
∫
∂Σ

ρ−→u (−→u .−→n)dS through the surface

and by the resultant of the forces applying on the volume.

The fluid is assumed to be inviscid so the forces are only composed of pressure −
∫
∂Σ

p−→n dS

and gravity

∫
Σ

ρ−→g dV . As the volume is fixed and the momentum differentiable, we get after

applying Green-Ostrogradski formula :∫
Σ

[
∂ (ρ−→u)

∂t
+ div(ρ−→u t−→u) +

−→
∇(P) + ρ−→g

]
dV = 0.

The volume is arbitrary so we obtain the local formulation for the equations of motion :
∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
+

1

ρ

∂P

∂x
= 0

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
+

1

ρ

∂P

∂z
+ g = 0

Conservation of energy

Neglecting the thermal exchanges in this modeling, the conservation of energy is dropped.
The thermal effects are not linked anymore with the dynamical ones.

27

7.1.3 The boundary conditions

When there is no bottom or no mouvement, we assume that the water level is at z = 0 and that
the bottom is at z = −h0. We consider then a free surface of equation z = ζ(x, t) = aη(x, t)
with an elevation of amplitude a and a bottom underwater characterized by the equation
z = b(x, t) = −h0 + d θ(x, t) and an amplitude of d.

Free surface kinematic condition

Assuming that the surface z = ζ(x, t) moves with the fluid so that it always contains the
same fluid particles, we obtain the kinematic conndition for the free surface:

w(x, ζ(x, t), t) =
∂ζ

∂t
(x, t) + u(x, ζ(x, t), t)

∂ζ

∂x
(x, t)

Free Surface dynamic condition

We neglect the tension effects and assume that the pressure P on the free surface is con-
stant to the atmospheric pressure Pa. We are now going to define another pressure p which
is the perturbation to the atmospheric pressure effect. Hence, let’s introduce the pressure
P (x, z, t) = Pa − ρgz + p(x, z, t). The condition P = Pa on the free surface becomes now :

p(x, ζ(x, t), t) = ρgζ(x, t).

Bottom kinematic condition

For an inviscid fluid, the bottom constitutes like the free surface a boundary which moves
with the fluid. Hence, we get the same kinematic condition for the bottom :

w(x, b(x, t), t) =
∂b

∂t
(x, t) + u(x, b(x, t), t)

∂b

∂x
(x, t)

7.1.4 The Euler equations

Avoiding the thermal and tension effects, for an inviscid fluid of constant density ρ, the two
dimensionnal Euler equations are given by :



∂u

∂x
+
∂w

∂z
= 0

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
+

1

ρ

∂p

∂x
= 0

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
+

1

ρ

∂p

∂z
= 0

w(x, ζ(x, t), t) =
∂ζ

∂t
(x, t) + u(x, ζ(x, t), t)

∂ζ

∂x
(x, t)

p(x, ζ(x, t), t) = ρgζ(x, t)

w(x, b(x, t), t) =
∂b

∂t
(x, t) + u(x, b(x, t), t)

∂b

∂x
(x, t)

28

7.2 Nondimensionalization and scaling of the equations

7.2.1 Nondimensionalization of the variables

We recall here that λ is a typical length distance for waves, h0 the undisturbed water depth.
The speed of the wave solution in the linear case is then c0 =

√
gh0. We can then construct

and typical time for the waves which is the ratio of the length and the speed. We define new
variables :

x∗ =
x

λ
z∗ =

z

h0

t∗ =
c0t

λ
u∗(x∗, z∗, t∗) =

u(x, z, t)

c0

The first question is how we can define a characteric speed for w. If we want to pre-
serve the incompressibility relation with the non-dimensional variables, then we must take

w∗(x∗, z∗, t∗) =
λw(x, z, t)

h0c0

and it comes :

∂u∗

∂x∗
+
∂w∗

∂z∗
= 0.

Then, if we want to preserve also the form of the first motion equation, then we must

introduce p∗(x∗, z∗, t∗) =
p(x, z, t)

ρgh0

. A new parameter appear in the second equation of motion

h0

λ
called the long wavelength parameter

∂u∗

∂t∗
+ u∗

∂u∗

∂x∗
+ w∗

∂u∗

∂z∗
+
∂p∗

∂x∗
= 0

(
h0

λ

)2 [
∂w∗

∂t∗
+ u∗

∂w∗

∂x∗
+ w∗

∂w∗

∂z∗

]
+
∂p∗

∂z∗
= 0

For the boundary conditions, we wrote the free surface equation as z = ζ(x, t) = aη(x, t).

We introduce η∗(x∗, t∗) = η(x, t) and ζ∗(x∗, t∗) =
ζ(x, t)

h0

and we do the same for the bottom of

equation z = b(x, t) = −h0 +d θ(x, t) with θ∗(x∗, t∗) = θ(x, t) and b∗(x∗, t∗) =
b(x, t)

h0

. Finally,

with the new non-dimensional variables, we get a new set of equations for the boundary

conditions introducing two new parameters :
a

h0

the free surface amplitude parameter and

d

h0

the bottom amplitude parameter.



w∗
(
x∗,

a

h0
η∗(x∗, t∗), t∗

)
=

a

h0

[
∂η∗

∂t∗
(x∗, t∗) + u∗

(
x∗,

a

h0
η∗(x∗, t∗), t∗

)
∂η∗

∂x∗
(x∗, t∗)

]

p∗
(
x∗,

a

h0
η∗(x∗, t∗), t∗

)
=

a

h0
η∗(x∗, t∗)

w∗
(
x∗,−1 +

d

h0
θ∗(x∗, t∗), t∗

)
=

d

h0

[
∂θ∗

∂t∗
(x∗, t∗) + u∗

(
x∗,−1 +

d

h0
θ∗(x∗, t∗), t∗

)
∂θ∗

∂x∗
(x∗, t∗)

]

29

7.2.2 Scaling of the variables

The six equations above show that respectively three parameters are going to give informations
on the different regimes for the motion of the waves.

Parameter Notation Expression

Long wave length parameter ε

(
h0

λ

)2

Free surface amplitude parameter α
a

h0

Bottom amplitude parameter δ
d

h0

We can first notice that if α tends to zero, the pressure p tends to zero and so does the
free surface elevation ζ. Hence there is no waves and we have to rescale the variable. We
introduce :

û(x∗, z∗, t∗) =
u∗(x∗, z∗, t∗)

α
, ŵ(x∗, z∗, t∗) =

w∗(x∗, z∗, t∗)

α
and p̂(x∗, z∗, t∗) =

p∗(x∗, z∗, t∗)

α
.

Then, we are going to seek solution so that α = O(ε) et δ = O(ε2) 2. Using ε ≈ α and
δ ≈ ε2, the system now only depend on ε:

∂û

∂x∗
+
∂ŵ

∂z∗
= 0

∂û

∂t∗
+ ε

[
û
∂û

∂x∗
+ ŵ

∂û

∂z∗

]
+

∂p̂

∂x∗
= 0

ε

[
∂ŵ

∂t∗
+ ε

(
û
∂ŵ

∂x∗
+ ŵ

∂ŵ

∂z∗

)]
+

∂p̂

∂z∗
= 0

ŵ (x∗, εη∗, t∗) =
∂η∗

∂t∗
(x∗, t∗) + εû (x∗, εη∗, t∗)

∂η∗

∂x∗
(x∗, t∗)

û (x∗, εη∗, t∗) = η∗(x∗, t∗)

ŵ (x∗,−1 + ε2θ∗, t∗) = ε

[
∂θ∗

∂t∗
(x∗, t∗) + εû (x∗,−1 + ε2θ∗, t∗)

∂θ∗

∂x∗
(x∗, t∗)

]
2We recall here that a function g dominate a function f in 0, and we note f = O(g), if there exists a

constant M so that in the neighbourhood of 0, we have f 6 Mg.

30

7.2.3 A unidirectional and long-time scaling model

We are now going to assume that the bottom b is moving at a constant speed U . We place
ourself in the frame of the bottom and introduce the variable ξ = x − Ut which gave in

non-dimensionless form ξ∗ =
ξ

λ
= x∗ − Frt∗ where Fr =

U

c0

is the Froude number. Hence we

get b∗(x∗, t∗) = b(ξ∗) with no time dependance anymore.

Moreover, we are going to seek the motion for long time scaling introducing τ = εt or
τ ∗ = εt∗ in non-dimensionless form. With these new variables (ξ∗, z∗, τ ∗) the model becomes
now unidirectionnal, searching for waves in the far-field of the time domain.

We introduce again a new notation for all the functions :

u(ξ∗, z∗, τ ∗) = û(x∗, z∗, t∗)

w(ξ∗, z∗, τ ∗) = ŵ(x∗, z∗, t∗)

p(ξ∗, z∗, τ ∗) = p̂(x∗, z∗, t∗)

η(ξ∗, τ ∗) = η∗(x∗, t∗)

θ(ξ∗) = θ∗(x∗, t∗)

We can now rewrite the system of equations scaled correctly to seek for fKdV equation:



∂u

∂ξ∗
+
∂w

∂z∗
= 0

−Fr
∂u

∂ξ∗
+ ε

[
∂u

∂τ ∗
+ u

∂u

∂ξ∗
+ w

∂u

∂z∗

]
+

∂p

∂ξ∗
= 0

ε

[
−Fr

∂w

∂ξ∗
+ ε

(
∂w

∂τ ∗
+ u

∂w

∂ξ∗
+ w

∂w

∂z∗

)]
+

∂p

∂z∗
= 0

w [ξ∗, εη, τ ∗] = −Fr
∂η

∂ξ∗
+ ε

[
∂η

∂τ ∗
+ u (ξ∗, εη, τ ∗)

∂η

∂ξ∗

]
p [ξ∗, εη, τ ∗] = η

w
[
ξ∗,−1 + ε2θ, τ ∗

]
= ε

[
−Fr

∂θ

∂ξ∗
+ εu

(
ξ∗,−1 + ε2θ, τ ∗

) ∂θ
∂ξ∗

]

31

7.3 From asymptotic development to fKdV model

7.3.1 Asymptotic development as ε −→ 0

Incompressibility relation

We are now using the last equations and develop all the functions in power of ε stopping at
the second order precision. If we write :

u(ξ∗, z∗, τ ∗) = u0(ξ∗, z∗, τ ∗) + εu1(ξ∗, z∗, τ ∗) +O(ε2)

w(ξ∗, z∗, τ ∗) = w0(ξ∗, z∗, τ ∗) + εw1(ξ∗, z∗, τ ∗) +O(ε2)

then, the incompressibility condition becomes :[
∂u0

∂ξ∗
+
∂w0

∂z∗

]
+ ε

[
∂u1

∂ξ∗
+
∂w1

∂z∗

]
+O(ε2) = 0.

Equations of motion

We introduce also p(ξ∗, z∗, τ ∗) = p0(ξ∗, z∗, τ ∗) + εp1(ξ∗, z∗, τ ∗) +O(ε2). We will suppose that
the bottom is moving at a critical regime so that Fr = 1 + εσ + O(ε2). The equations of
motion now becomes :

[
−∂u0

∂ξ∗
+
∂p0

∂ξ∗

]
+ ε

[
−σ∂u0

∂ξ∗
− ∂u1

∂ξ∗
+
∂u0

∂τ ∗
+ u0

∂u0

∂ξ∗
+ w0

∂u0

∂z∗
+
∂p1

∂ξ∗

]
+O(ε2) = 0

∂p0

∂z∗
+ ε

[
−∂w0

∂ξ∗
+
∂p1

∂z∗

]
+O(ε2) = 0

Free surface conditions

We especially have to be careful with the boundary conditions. We are going to make a Taylor
development around zero for u0 and for w0. We also expand asymptotically according to ε
the free surface : η(ξ∗, τ ∗) = η0(ξ∗, τ ∗) + εη1(ξ∗, τ ∗) +O(ε2). It comes then :

(
w0|z=0 +

∂η0

∂ξ∗

)
+ ε

(
∂w0

∂z∗
|z=0η0 + w1|z=0 + σ

∂η0

∂ξ∗
+
∂η1

∂ξ∗
− ∂η0

∂τ∗
− u0|z=0

∂η0

∂ξ∗

)
+O(ε2) = 0

[p0|z=0 − η0] + ε

[
η0
∂p0

∂z∗
|z=0 + p1|z=0 − η1

]
+O(ε2) = 0

Bottom condition

Finally, we expand the bottom asymptotically θ(ξ∗, τ ∗) = θ0(ξ∗, τ ∗) + εθ1(ξ∗, τ ∗) +O(ε2) and
we also use a Taylor development of u0 and w0 around −1. We get the equation :

w0|z=0 + ε

[
w1|z=−1 +

∂θ0

∂ξ∗

]
+O(ε2) = 0

32

7.3.2 The emergence of the fKdV model

Solving the system of zero-order approximation

We have the system as follow to integrate :

∂p0

∂z∗
= 0 and p0|z=0 = η0

∂u0

∂ξ∗
=
∂p0

∂ξ∗

∂w0

∂z∗
= −∂u0

∂ξ∗
and w0|z=−1 = 0

w0|z=0 = −∂η0

∂ξ∗

By integrating the first equation using the dynamic boundary condition, we get p0 = η0

for all z ∈ [−1, 0]. Integrating the second equation and assuming that there is no motion and
no pressure at infinity, we get also u0 = p0 = η0 for all z ∈ [−1, 0]. Finally, we get the final

relation by integrating the last equation and using the bottom condition w0 = −(z∗ + 1)
∂η0

∂ξ∗

compatible with the last relation. Hence, we get :

∀z∗ ∈ [−1, 0],


u0 = p0 = η0

w0 = −(z∗ + 1)
∂η0

∂ξ∗

Solving the system of first order approximation

We are going to do the same thing. Using the previous results, we have to integrate the
system:

∂p1

∂z∗
=

∂w0

∂ξ∗︸︷︷︸
−(z∗+1)

∂2η0

∂ξ∗2

and p1|z=0 = η1 − η0
∂p

∂z∗
|z=0︸ ︷︷ ︸

0

∂w1

∂z∗
= −∂u1

∂ξ∗
= σ

∂u0

∂ξ∗︸︷︷︸
∂η0

∂ξ∗

− ∂u0

∂τ ∗︸︷︷︸
∂η0

∂τ ∗

− u0︸︷︷︸
η0

∂u0

∂ξ∗︸︷︷︸
∂η0

∂ξ∗

−w0
∂u0

∂ξ∗︸︷︷︸
0

−∂p1

∂ξ∗

w1|z=−1 = −∂θ0

∂ξ∗
and w1|z=0 = − ∂w0

∂z∗
|z=0︸ ︷︷ ︸

−
∂η0

∂ξ∗

η0 − σ
∂η0

∂ξ∗
− ∂η1

∂ξ∗
+
∂η0

∂τ ∗
+ u0|z=0︸ ︷︷ ︸

η0

∂η0

∂ξ∗

33

Integrating the first equation and using the kinamatic condition, we can get p1 that we
inserted into the second relation. Then, we integrate this last between −1 and 0 using the
two last boundary conditions. We can see that appears then the equation which is fKdV in
a dimensionless form:

−2
∂η0

∂τ ∗
+ 2σ

∂η0

∂ξ∗
− 3η0

∂η0

∂ξ∗
− 1

3

∂3η0

∂ξ∗3
=
∂θ0

∂ξ∗

Getting back to the dimensional form

We recall the notation : ξ∗ =
ξ

λ
and τ ∗ =

c0ε

λ
t. Then, we have σ =

Fr − 1

ε
. The last equation

can then be rewriten after simplifying by λ and multiplying by ε2 :

−2ε

c0

∂η0

∂t
+ 2ε (Fr − 1)

∂η0

∂ξ
− 3ε2η0

η0

∂ξ
− λ2ε2

3

∂3η0

∂ξ3
= ε2∂θ0

∂ξ

Then, we use the approxiamtions made between the parameters to obtain the original

scaling of the free surface elevation. This gives εη0 ≈
aη0

h0

=
ζ0

h0

and λ2ε2η0 ≈ h2
0ζ0. For

the bottom elevation, we obtain ε2θ0 ≈
dθ0

h0

= 1 +
b0

h0

. After simplifying by h0, the equation

finally became the forced Korteweg and de Vries one for the free surface elevation ζ0 in the
frame of the bottom (ξ, t) near the critical regime Fr ≈ 1:

−2

c0

∂ζ0

∂t
+ 2(Fr − 1)

∂ζ0

∂ξ
− 3

h0

ζ0
∂ζ0

∂ξ
− h2

0

3

∂3ζ0

∂ξ3
=
∂b0

∂ξ

34

Chapter 8

Computation of the forced Korteweg
and de Vries equation

We discretize the following equation with a second order accurate finite difference scheme in
space and a Crank-Nicholson scheme in time :

−2

c0

∂2ζ

∂ξ∂t
+ 2(Fr − 1)

∂2ζ

∂ξ2
− 3

2h0

∂2 (ζ2)

∂ξ2
− h2

0

3

∂4ζ

∂ξ4
=
∂2b

∂ξ2
.

Then, we explain how we decided to treat the non-linearity and the boundary conditions.

8.1 A Crank-Nicholson scheme for time

The fKdV equation is written in the form :

∂2ζ

∂t∂ξ
(ξ, t) = Ψ(ξ, t).

Let’s choose a uniform time step ∆t so that [0, T] ≈ {t0, ..., tM} with tj = j∆t for all

j ∈ {0, ...,M} and M = Ent

[
T

∆t

]
. We recall the backward and forward finite difference in

time : 

Ψ(ξ, t) =
∂2ζ

∂t∂ξ
(ξ, t) =

∂ζ

∂ξ
(ξ, t+ ∆t)− ∂ζ

∂ξ
(ξ, t)

∆t
+O(∆t2)

Ψ(ξ, t+ ∆t) =
∂2ζ

∂t∂ξ
(ξ, t+ ∆t) =

∂ζ

∂ξ
(ξ, t+ ∆t)− ∂ζ

∂ξ
(ξ, t)

∆t
+O(∆t2)

The Crank-Nicholson scheme is a mean of the forward and backward one. Hence, if we
add the two previous equations, we get the formula :

∂ζ

∂ξ
(ξ, t+ ∆t)− ∂ζ

∂ξ
(ξ, t)

∆t
=

1

2
[Ψ(ξ, t+ ∆t) + Ψ(ξ, t)] .

35

8.2 A finite difference scheme for space

We use a finite difference scheme in space. Let’s use the Taylor development of ζ around the
point (ξ, t) :

ζ(ξ + ∆ξ, t) = ζ(ξ, t) + ∆ξ
∂ζ

∂ξ
(ξ, t) +

∆ξ2

2

∂2ζ

∂ξ2
(ξ, t) +

∆ξ3

6

∂3ζ

∂ξ3
(ξ, t) +O(∆ξ4)

ζ(ξ + ∆ξ, t) = ζ(ξ, t)−∆ξ
∂ζ

∂ξ
(ξ, t) +

∆ξ2

2

∂2ζ

∂ξ2
(ξ, t)− ∆ξ3

6

∂3ζ

∂ξ3
(ξ, t) +O(∆ξ4)

Let’s add the first equation with the second and we obtain an approximation for the second
derivative of second order accurate :

∂2ζ

∂ξ2
(ξ, t) =

ζ(ξ + ∆ξ, t)− 2ζ(x, t) + ζ(ξ −∆ξ, t)

∆ξ2
+O(∆ξ2).

If we now substract the two equations, we obtain an approximation for the first derivative
of second order accurate :

∂ζ

∂ξ
(ξ, t) =

ζ(ξ + ∆ξ, t)− ζ(ξ −∆ξ, t)

2∆ξ
+O(∆ξ2).

If we iterate this process for the fourth derivative, we can obtain also the fourth order
derivative of second order accurate :

∂4ζ

∂ξ4
(ξ, t) =

∂2ζ

∂ξ2
(ξ + ∆ξ, t)− 2

∂2ζ

∂ξ2
(ξ, t) +

∂2ζ

∂ξ2
(ξ −∆ξ, t)

∆ξ2
+O(∆ξ2)

=
ζ(ξ + 2∆ξ, t)− 4ζ(ξ + ∆ξ, t) + 6ζ(ξ, t)− 4ζ(ξ −∆ξ, t) + ζ(ξ − 2∆ξ, t)

∆ξ4
+O(∆ξ2)

8.3 A discretization of the non-linearity adapted to the

scheme

For the nonlinear term, we are going to use a trick which will appear adapted to the Crank-
Nicholson scheme.

ζ(ξ, t+ ∆t)2 =

[
ζ(ξ, t) + ∆t

∂ζ

∂t
(ξ, t) +O(∆t2)

]2

= ζ(ξ, t)2 + 2ζ(x, t)∆t

[
∂ζ(ξ, t+ ∆t)− ζ(ξ, t)

∆t
+O(∆t)

]
+O(∆t2)

= 2ζ(ξ, t)ζ(ξ, t+ ∆t)− ζ(ξ, t)2 +O(∆t2)

Hence, we have a formula for the non-linear term of second order accurate in time:

ζ(ξ, t+ ∆t)ζ(ξ, t) =
1

2

(
ζ(ξ, t)2 + ζ(ξ, t+ ∆t)2

)
+O(∆t2)

36

8.4 Resolution of the system with a sparse matrix

Let’s choose a space step ∆ξ. We will in a first time assume that the numerical space domain
is sufficiently large so that the wave can’t reach the border and that the bottom is centered in

zero. Let’s say [−L,L] ≈ {ξ0, ..., ξ2N} where ξi = (i−N)∆ξ and N = Ent

[
L

∆ξ

]
. Hence, the

value of the functions taken at the extra points such as ξ−1, ξ−2 or ξN+1, ξN+2 will be taken
to zero as L is sufficiently large. We will use the notation :

∀(i, j) ∈ {0, ..., N} × {0, ...,M} , ζ(ξi, tj) = ζji .

We can now rewrite our system discretized in time and space.

− 2
c0∆t

[
ζj+1
i+1 − ζ

j+1
i−1

2∆ξ
−

ζji+1 − ζ
j
i−1

2∆ξ

]
+ 2 (Fr − 1)

1
2

[
ζj+1
i+1 − 2ζj+1

i + ζj+1
i−1

∆ξ2
+
ζji+1 − 2ζji + ζji−1

∆ξ2

]

− 3
2h0

[
ζj+1
i+1 ζ

j
i+1 − 2ζj+1

i ζji + ζj+1
i−1 ζ

j
i−1

∆ξ2

]

−h
2
0

3
1
2

[
ζj+1
i+2 − 4ζj+1

i+1 + 6ζj+1
i − 4ζj+1

i−1 + ζj+1
i−2

∆ξ4
+
ζji+2 − 4ζji+1 + 6ζji − 4ζji−1 + ζji−2

∆ξ4

]

=

bi+1 − 2bi + bi−1

∆ξ2

We can rearrange this in a system of the form A(ζj).ζj+1 = B(ζj). Hence, we have a
system of N equations to solve at each time step. The matrix A is sparse as only the five
diagonals of the center are non zeros. After rearrranging the term we get the following system
of N equations.

37

(
− h2

0

6∆ξ4

)
ζj+1
i+2 +

(
− 1

c0∆t∆ξ
+
Fr − 1

∆ξ2
−

3ζji+1

2h0∆ξ2
+

2h2
0

3∆ξ4

)
ζj+1
i+1

+

(
−2 (Fr − 1)

∆ξ2
+

6ζji
2h0∆ξ2

− h2
0

∆ξ4

)
ζj+1
i

+

(
1

c0∆t∆ξ
+
Fr − 1

∆ξ2
−

3ζji−1

2h0∆ξ2
+

2h2
0

3∆ξ4

)
ζj+1
i−1

+

(
− h2

0

6∆ξ4

)
ζj+1
i−2

=
bi+1 − 2bi + bi−1

∆ξ2

+

(
h2

0

6∆ξ2

)
ζji+2

−
(

1

c0∆t∆ξ
+
Fr − 1

∆ξ2
+

2h2
0

3∆ξ4

)
ζji+1

+

(
2 (Fr − 1)

∆ξ2
+

h2
0

∆ξ4

)
ζji

+

(
1

c0∆t∆ξ
− Fr − 1

∆ξ2
− 2h2

0

3∆ξ4

)
ζji−1

+

(
h2

0

6∆ξ4

)
ζji−2

8.5 A filter to assume the correct boundary conditions

Although this scheme of the forced KdV equation seems to be quite simple and stable for
big time step, it assumes that the waves produced by the moving bottom do not reach the
boundaries of the computational domain. Therefore, if we want to simulate for a long time
the phenomenon, a sufficiently large domain must be chosen while a reasonable computation
time needs the smallest one.

38

In order to solve this problem, we decided to apply a filter F to the solution ζ at each
time step. The filter is zero at the left boundary ξ = −L and one after ξ = −L + 20. A
cosinus profile is then used to link the two lines.

∀ξ ∈ [−L,L] , F (ξ) =
1[−L,−L+20] (ξ)

2

(
1 + cos

(
π
ξ + L− 20

20

))
+ 1]−L+20,L] (ξ)

Figure 8.1: The spatial profile of the filter.

At each time step, we multiply ζ by F in order to kill the cnoidal waves. It turns out
that this procedure works well without changing the rest of the free surface elevation profile.
Therefore, we have a scheme that allow big time step with a small computational domain.

Figure 8.2: The filter does not interact at all after a long time with the elevation.

39

Chapter 9

Validation of the numerical resolution
of the forced KdV equation

We first are going to check if the code is working by using the exact solution of the KdV
equation. Then, we will compare its performance with other algorithms implemented on
Matlab.

9.1 The exact analytic form of the solitary waves gen-

erated

We want to find one of the exact solution of the Korteweg and de Vries equation (Fr = 1 et
b = 0) that is a solitary wave :

1

c0

∂ζ

∂t
+

3

2h0

ζ
∂ζ

∂ξ
+
h2

0

6

∂3ζ

∂ξ3
= 0

limξ→±∞ ζ(ξ, t) = 0

limξ→±∞
∂ζ

∂ξ
(ξ, t) = 0

limξ→±∞
∂2ζ

∂ξ2
(ξ, t) = 0

As we seek for a solitary wave, we search for a travelling wave of the form ζ(ξ, t) = f(χ) =
f(ξ − ct) where c is the speed of the wave and χ = ξ − ct is the charateristic on which the
waves travels. The equation became then :

− c

c0

df

dχ
(χ) +

3

4h0

d(f 2)

dχ
(χ) +

h2
0

6

d3f

dχ3
(χ) = 0

We integrate this equation using the zero boundary conditions and we then multiply again

40

by f ′ the equation obtained so as to integrate again. We then have :

f ′2(χ) = − 3

h3
0

f 2(χ)

f − 2h0c

c0︸ ︷︷ ︸
:=a



The right member of this relation is a trinom that must be positive. This impose that the

wave elevation will be between 0 and a =
2h0c

c0

. We denote χ0 the point where the wave will

achieve its maximum. Hence we have f(χ0) = a. We can pass to the root and now separate
the variable and integrate between χ0 and χ. We get :

h0

√
h0

3

∫ χ

χ0

f ′(ς)

f(ς)
√
a− f(ς)

dς =

∫ χ

χ0

1dς ⇔ −2h0

√
h0

3a
tanh−1

(√
a− f(χ)

a

)
= χ− χ0

⇔ f(χ) = a sech2

[
1

2h0

√
3a

h0

(χ− χ0)

]

To get back to the wave elevation ζ let’s say that χ0 is the point ξ0 at t = 0 so that
f (χ0) = a = ζ (ξ0, 0). We then have the formula remembering the relation 2ch0 = c0a

1 :

ζ(ξ, t) = a sech2

[
1

2h0

√
3a

h0

(
ξ − ξ0 − c0

a

2h0

t

)]

Finally, in order to get back to the physical space variable x, we recall that we assume
during the fKdV model derivation that ξ = x− c0t. Let’s choose ξ0 the point x0 at t = 0. As
above, we have ζ (ξ0) = ζ (x0) = a. Rearranging the term, we obtain the final formulation for
the wave elevation ζ :

ζ (x, t) = a sech2

[
1

2h0

√
3a

h0

(
x− x0 − c0

(
1 +

a

2h0

)
t

)]

Therefore, we can see that the wave amplitude is the only degree of freedom in the formu-
lation of the wave elevation. In particular, the speed of the wave is only determined by the
amplitude with the relation found by Scott Russell :

c = c0

(
1 +

a

2h0

)
≈
√
g (h0 + a)

1We recall here that sech =
1

cosh
=

2
exp() + exp(−)

and the identity 1− tanh2 =
1

cosh2
= sech2.

41

9.2 Description of the KdV algorithm

I implemented four different discretizations of the folowing dimensional KdV equation and
compared them to its analytical solution found in the previous section.

1

c0

∂ζ

∂t
+

3

2h0

ζ
∂ζ

∂ξ
+
h2

0

6

∂3ζ

∂ξ3
= 0

ζ(x, 0) = a sech2

(
1

2h0

√
3a

h0

x

)

All the Matlab programs can be found in the last part of the report entitled Annexes. It
mainly consists in :

• the historical scheme developped by Zabusky and Kruskal [12] that uses a finite differ-
ence method and a leap-frog discretization ;

• a scheme developped by Fornberg and Whitham [19] that involves a clever disctretization
using the Fourier transform and a leap-frog method ;

• a scheme implemented by Trefethen [15] that employs a fourth order Runge-Kutta
algorithm and the method of integrating factor in the pseudo-spectral discretization ;

• the scheme used in the optimization algorithm [1] and described above that discretizes
the derivated KdV equation with a Cranck-Nicholson and a finite difference method.

We give below the main data used in the four algorithms. First, we will confront the
L2-norm error between the analytical solution ζref and each numerical solution ζ :

∀j ∈ {1, . . .M} , ‖ζ − ζref‖ (tj) =

√√√√ 1

2N + 1

2N∑
i=0

(
ζji − ζ

j
refi

)2

Then, we will compare the running time, the stability condition and the treatment of boundary
conditions for each algorithm.

Parameter Notation Value
Computational domain [−L,L] [−12 m, 12 m]
Water depth h0 1 m
Speed of reference c0 =

√
gh0 3.1 m.s−1

Amplitude of the wave a 0.2 m
Speed of the wave in the bottom frame c = c0a\2h0 0.3 m.s−1

Space step ∆ξ 0.1 m
Computational time T 10 s
Time step ∆t depends on the CFL condition

42

9.3 Performance of the KdV algorithms

First, the error commited via the three discretizations described for comparison are of 4 order
of magnitude. Our algorithm is of the same order but is twice less precise. However, this is
still physically negligeable. The sudden increase of the error for our discretization comes from
the fact that the soliton interferes a bit with the zero boundary condition hypothesis.

Figure 9.1: Our algorithm seems to perform badly compared to other methods. Indeed, the
L2-norm error is the double of others one.

However, the loss of precision is compensated by a significant gain of time in the running
process. Indeed, all the previous algorithms are subject to a strong stability condition of the
type ∆t = O (∆x3) whereas the algorithm chosen has not. This really justifies the choice
made: a fast algorithm that will be incorporated in an optimization loop.

43

Algorithm CFL condition Value Running time

Our discretization none ∆t = 0.1 s 0.4 s

Zabusky and Kruskal ∆t 6
∆ξ3

4 + a∆ξ2
∆t = 2.5 10−4 s 2.7 s

Trefethen ∆t 6 10
3∆ξ3

2π2

(π
L

)3

∆t = 2.7 10−5 s 14 min 13 s

Fornberg and Whitham ∆t 6
3∆ξ3

2π2

(π
L

)3

∆t = 2.7 10−6 s 15 min 28 s

Finally, when a second member is added in the KdV equation, all the algorithms presented
became less efficient than the one chosen. Indeed, the forcing term seems to really introduce
numerical instabilities. Spectral methods and leap-frog scheme is known for enhancing them
[19].

To conclude, the Fourier methods always suppose that functions are periodic on the spatial
domain. This imposes a large computational domain or the introduction of a filter to ensure
the zero boundary conditions. The last suggestion really reduces the running time but has not
been used for the comparison between the different algorithm performances : a sufficiently
large spatial domain was chosen in order to ensure that the boundaries were not interfering
with the solution.

44

Part IV

The shape optimization problem

45

Chapter 10

Formulation of the design
optimization problem

First, we will clearly describe the optimization problem in mathematical term : maximizing
a functionnal in an admissible set of solutions. Then, we will use the adjoint formulation of
the problem to evaluate the gradient of the functionnal.

10.1 Find the bottom that creates the highest wave

With the forced KdV equation, it has been shown that solitons can be generated from a
moving bottom underwater. in order to optimize the wave maker, one interesting degree of
freedom is the choice of shape.

This design optimization process has been the main subject of this report : under some
conditions, is it possible to find numerically an optimal bottom that could create the highest
wave ? Using the fKdV model, how does the shape affect the wave height ?

Therefore, the goal here is to find max a (b) where the amplitude a of the generated soliton
depends on the bottom b and in particular on its shape.

Figure 10.1: The fKdV equation generates an autonomous solitary wave only determined by
its amplitude a which depends on the bottom b. In a first approach, we want to find maxb a.

46

In [20], Wu studied how the energy of the forcing disturbance is shared out. He obtained
relations between the period of soliton generation τ , the energy E received by the trailing
wavetrain from the bottom and the amplitude a of the solitary wave :

τ =
64

(3a)3\2 and
dE
dt

=
(a

2

)3

.

Therefore, maximizing the amplitude of the solitary wave is equivalent to maximize the
whole surface elevation and will reduce the period of generation. With this remark in mind,
we decided to choose a simpler functional to maximize :

J(b) =
1

2

∫ T

0

∫ +∞

−∞
ζb(ξ, t)

2dξdt.

where b is the bottom and ζb is the corresponding surface elevation solution of the fKdV
equation with the initial condition ζb (ξ, 0) = 0.

Finally, an admissible set of solutions has to be chosen. We decided to impose the bottom
to have its support in [−S, S] with S > 0, to be positive and to have its L2-norm bounded by
a fixed constant M . It means that the set of admissible bottoms is :

B =

{
b ∈ L2(R), supp b ⊆ [−S, S], b > 0 and

∫
R
b2 (ξ) dξ 6 M2

}
.

Hence, the problem is to find max
b∈B

J(b) = −min
b∈B
−J(b).

10.2 The dual continuous approach to evaluate the gra-

dient of the functionnal

Let’s recall here the problem in term of minimum where the support condition has been
inserted into the partial differential equation. We want to find min

b∈B
J(b) with :

J(b) = − 1

2

∫ T

0

∫ +∞

−∞
ζb(ξ, t)

2dξdt

B =

{
b ∈ L2(R), b > 0 and

∫
R
b2 (ξ) dξ 6 M2

}
where ζb is solution of the partial differential equation

− 1

c0

∂ζb
∂t

+

[(
U

c0

− 1

)
− 3

2h0

ζb

]
∂ζb
∂ξ
− h2

0

6

∂3ζb
∂ξ3

=
1

2

∂
(
b1[−S,S]

)
∂ξ

ζb(ξ, 0) = 0

In order to solve this problem, a descent method needs the gradient of the functionnal.
Therefore, a formulation of an adjoint problem is needed : the sensitivity of the functionnal
will be ruled by an other partial differential equation.

47

10.2.1 Searching for a shape derivative of the functionnal

We want to find the Gâteau derivative of the functional so as to find our minimum with a
gradient method. We make a small perturbation of the bottom b in a direction h. Thus, we
have :

J(b+ εh)− J(b)

ε
= − 1

2ε

∫ T

0

∫ +∞

−∞

[
ζ2
b+εh − ζ2

b

]
dxdt

= −1

2

∫ T

0

∫ +∞

−∞

ζb+εh − ζb
ε

[ζb+εh + ζ(b)] dxdt

Assume that we can pass to the limit when ε −→ 0. Denoting 〈dζ(b)|h〉 = ζ, then we
obtain :

〈dJ(b)|h〉 = −
∫ T

0

∫ +∞

−∞
ζζdxdt

10.2.2 The partial differential equation followed by ζ

Let’s choose ε > 0 and h a direction of perturbation for the bottom b. The two wave elevations
ζb+εh and ζb are respectively solution of the partial differential equations :

− 1

c0

∂ζb
∂t

+

[(
U

c0

− 1

)
− 3

2h0

ζb

]
∂ζb
∂ξ
− h2

0

6

∂3ζb
∂ξ3

=
1

2

∂
(
b1[−S,S]

)
∂ξ

ζb(ξ, 0) = 0


− 1

c0

∂ζb+εh
∂t

+

[(
U

c0

− 1

)
− 3

2h0

ζb+εh

]
∂ζb+εh
∂ξ

− h2
0

6

∂3ζb+εh
∂ξ3

=
1

2

∂
(
b+ εh1[−S,S]

)
∂ξ

ζb+εh(ξ, 0) = 0

Let’s substrack the last with the first equation and divide by ε and then pass to the limit
when ε tends to 0. We have to take care with the non-linear term in this way :

ζb+εh
∂ζb+εh
∂ξ

− ζb
∂ζb
∂ξ

= [ζb+εh − ζb]
∂ζb+εh
∂ξ

+ ζb
∂

∂ξ
[ζb+εh − ζb]

Hence, we get the partial differential equation for ζ :
− 1

c0

∂ζ

∂t
+

(
U

c0

− 1

)
∂ζ

∂ξ
− 3

2h0

[
ζ
∂ζb
∂ξ

+ ζb
∂ζ

∂ξ

]
− h2

0

6

∂3ζ

∂ξ3
=

1

2

∂
(
h1[−S,S]

)
∂ξ

ζ(ξ, 0) = 0

48

10.2.3 The emergence of the adjoint

Let’s now multiply the last equation by an unknown function v and let’s integrate by part
enough time to put the derivatives of ζ on v. After a tedious calculus we obtain :∫ T

0

∫ +∞

−∞
ζ

[
1
c0

∂v

∂t
−
(
U

c0
− 1
)
∂v

∂ξ
+

3
2h0

ζb
∂v

∂ξ
+
h2

0

6
∂3v

∂ξ3

]
= −1

2

∫ T

0

∫ +∞

−∞
h1[−1,1]

∂v

∂ξ

− 1
c0

∫ +∞

−∞

[
vζ
]T
0

+
∫ T

0

[
1
2
hv1[−S,S] −

(
U

c0
− 1
)
vζ +

3
2h0

vζζb +
h2

0

6

(
v
∂2ζ

∂ξ2
− ∂v

∂ξ

∂ζ

∂ξ
+ ζ

∂2v

∂ξ2

)]+∞

−∞︸ ︷︷ ︸
=0

We now can see the adjoint equation appearing in the left member of the equation. We
want to calculate

〈dJ(b)|h〉 = −
∫ T

0

∫ +∞

−∞
ζζdxdt.

and if we define v as the solution of this adjoint partial differential equation :


1

c0

∂v

∂t
−
(
U

c0

− 1

)
∂v

∂ξ
+

3

2h0

ζb
∂v

∂ξ
+
h2

0

6

∂3v

∂ξ3
= ζb

v(ξ, T) = 0

then, if we remember that we worked for imposing the zero boundary conditions via a filter,
our last relation will simplify into :

〈dJ(b)|h〉 = −
∫ T

0

∫ +∞

−∞
ζζdxdt =

1

2

∫ T

0

∫ +∞

−∞
h1[−S,S]

∂v

∂ξ
dxdt =

〈
1

2
1[−S,S]

∫ T

0

∂v

∂ξ
|h
〉

In other word, we have found the shape derivative of our functionnal :

dJ(b)|ξ =
1

2
1[−S,S](ξ)

∫ T

0

∂v

∂ξ
(ξ, t)dt.

where v is solution of the adjoint problem depending on ζb solution of the fKdV equation.

49

10.3 The computation of the adjoint problem

In computationnal fluids dynamics, a huge amount of work has been done to obtain very
efficient algorithms for solving very difficult partial differential equations such as the ones in
the full Navier Stokes model.

However, with the development of design optimization, new types of equations emerged
from adjoint formulations of problems. Moreover, the computation of these equations turns
out to be very difficult. The lack of physical intuition makes it even more difficult.

We decided to use exactly the same scheme for the adjoint equation than for the fKdV
one. This means that a derivation according to the space variable is applied on the adjoint
equation. Then, the space discretization uses the classical finite difference method and the
time one employs the Crank-Nicholson scheme.

(
− h2

0

12∆ξ4

)
vji−2 +

− 1
2c0∆t∆ξ

+
Fr − 1
2∆ξ2

+
3
(
ζji+1 − ζ

j
i−1

)
16h0∆ξ2

−
3ζji

8h0∆ξ2
+

h2
0

3∆ξ4

 vji−1

+

(
−Fr − 1

∆ξ2
+

3ζji
2h0∆ξ2

− h2
0

2∆ξ4

)
vji

+

 1
2c0∆t∆ξ

+
Fr − 1
∆2ξ2

−
3
(
ζji+1 − ζ

j
i−1

)
16h0∆ξ2

−
3ζji

4h0∆ξ2
+

h2
0

3∆ξ4

 vji+1

+
(
− h2

0

12∆ξ4

)
vji+2

= −
ζj+1
i+1 + ζji+1 − ζ

j+1
i−1 − ζ

j
i−1

4∆ξ

+
(

h2
0

12∆ξ4

)
vj+1
i−2

−

 1
2c0∆t∆ξ

+
Fr − 1
2∆ξ2

+
3
(
ζj+1
i+1 − ζ

j+1
i−1

)
16h0∆ξ2

−
3ζj+1
i

4h0∆ξ2
+

h2
0

3∆ξ4

 vj+1
i−1

+

(
Fr − 1
∆ξ2

−
3ζj+1
i

2h0∆ξ2
+

h2
0

2∆ξ4

)
vj+1
i

+

 1
2c0∆t∆ξ

− Fr − 1
2∆ξ2

+
3
(
ζj+1
i+1 − ζ

j+1
i−1

)
16h0∆ξ2

+
3ζj+1
i

4h0∆ξ2
− h2

0

3∆ξ4

 vj+1
i+1

+
(

h2
0

12∆ξ4

)
vj+1
i+2

50

However, in the adjoint equation, the evolution of time is reversed, so we must solve a
system of the form A (ζj) vj = B (vj+1, ζj+1, ζj) where the unknown vector is vj.

Calculations are not detailled here but they are exactly the same as for the forced KdV
equation and the algorithm turns out to work well. The same filter on the left and right side
is employed to ensure a zero boundary condition at every time. This allows a small spatial
domain and reduces the running time.

∀ξ ∈ [−L,L] , F (ξ) =
1[−L,−L+20] (ξ)

2

(
1 + cos

(
π
ξ + L− 20

20

))
+ 1]−L+20,L] (ξ)

+
1[L−20,L] (ξ)

2

(
1 + cos

(
π
ξ − L+ 20

20

))

Figure 10.2: Spatial profile of the adjoint filter in the case L = 50 m.

51

On the figure below, we can notice that the filter interacts a bit with the adjoint solution
v after a long time whereas this was not the case in the fKdV equation. However, we will
assume this difference negligible in order to perform better the optimization algorithm.

Figure 10.3: We compared the adjoint solution obtained with a [−50 m, 50 m]-filter on fKdV
and the adjoint, with the one taken on a large computationnal domain L = 500m without any
filter.

52

Chapter 11

The numerical approach using Usawa
algorithm

Now that we can evaluate the derivative of our functionnal dJ(b) solving each time two
partial differential equations, let’s see the numerical point of view. After the discretization, b
is not anymore a function in infinite dimension space. Usawa algorithm is a way to replace a
constrainted minimization problem by a sequence of unconstrainted minimization problem.

11.1 Introduction of the Lagrangian

Let’s denote ∆ξ the step discretization. As the support of b is included in [−S, S], b will be

characterized by R = Ent

[
2S

∆ξ

]
+1 points where Ent[.] denotes here the floor function. Thus,

b = (b0, ..., bR−1)T ∈ RR. We then introduce the lagrangian :

L : RR × (R+)R+1 −→ R

(b, λ) 7−→ J(b)−
R−1∑
n=0

λnbn + λR

(∫ S

−S
b2 −M2

)
where the integral has been approximated by the Simson rule1.

The theory of the lagrangian then gives us a way to solve equivalently our minimization
problem [6].

Find inf
b>0,

∫
b26M2

J(b)⇐⇒


Define G(λ) = inf

b∈RR
L(b, λ)

Find sup
λ∈RR+1

+

G(λ)

1We recall that if the interval is slipt up in 2N subintervals of same legnth [a, b] ≈ {a, x1, . . . , x2N−1, b},

then we have the approximation
∫ b

a

f (ξ) dξ ≈ ∆ξ
3

f (a) + 4
N∑

j=1

f (x2j−1) + 2
N−1∑
j=1

f (x2j) + f (b)

.

53

The Usawa algorithm combine a gradient method and a projected gradient method. Hence,
we need a derivative for the lagrangian. Numerically, if we take the limit of the quantity
L(b+ εh, λ)− L(b, λ)

ε
when ε→ 0 and write it in the form 〈dL(b)|h〉, we get : dL(b)0

...
dL(b)R−1

 =

 dJ(b)0
...

dJ(b)R−1

−
 λ0

...
λR−1


︸ ︷︷ ︸

λ∗

+2λR

 b0
...

bR−1



which we can write introducing the vector λ∗ ∈ RR in a synthetic way :

dL(b) =
1

2
1[−S,S]

∫ T

0

∂vζb
∂ξ
− λ∗ + 2λRb

11.2 Behaviour expected from the algorithm

During the initialization, we choose an initial bottom that satisfies all the conditions required
to be in the admissible set of solutions. It means that λ = 0 and so L (b, λ) = J (b). Therefore,
at the beginning, the evolution of the bottom shape will only be ruled by the functionnal and
not the constraints.

As we know that the wave height is very sensitive to the bottom one and that the support
is fixed, we expect from the algorithm to increase the bottom maximum elevation d. However,
after some iterations, the bottom won’t be anymore in the admissible set which means that
λ > 0. Then, the constraints will begin to act more and more on the evolution of the bottom
shape in order to bring the bottom back to the admissible set.

Therefore, we expect from the algorithm oscillations of the funtionnal around an equilib-
rium between the will of the functionnal and the constraints. This is exactly the meaning of
the saddle point sup

λ∈RR+1
+

inf
b∈RR
L(b, λ).

The convergence of the algorithm will mainly depends on how quickly the constraints will
intervene or not in the process respectively if the constraints are not satisfied or if they are.
This will be ruled by a numerical parameter κ really difficult to tune.

11.3 Description of the algorithm

11.3.1 Initialization

We choose a bottom b0 ∈ RR verifying the constrains b0 > 0, supp b0 ⊆ [−S, S] and∫
R

(
b0
)2

6 M2. We also choose a λ0 ∈ (R+)R+1. In the algorithm, we fix λ0 = 0.

In order to test the performances of the algorithm, we implemented it for various initial
bottom. We choose :

54

• a cube profile b0 (ξ) = d1[−S,S] (ξ);

• a cosinus profile b0 (ξ) =
d

2

[
1 + cos

(
πξ

S

)]
1[−S,S] (ξ) ;

• a triangle profile b0 (ξ) = d

(
S + ξ

2S

)
1[−S,S] (ξ);

• an inverse triangle profile b0 (ξ) = d

(
S − ξ

2S

)
1[−S,S] (ξ);

• a bowl profile b0 (ξ) = d

(
ξ

S

)4

1[−S,S] (ξ);

• a double semi-elliptic profile of the form

b0 (ξ) = d

1[−S,S/2] (ξ)

√
1−

(
4ξ

S
+ 3

)2

+ 1[S/2,S] (ξ)

√
1−

(
4ξ

S
− 3

)2
 .

Figure 11.1: We compared the results obtained by the fKdV model on various initial bottoms
and oberve the differences between the waves generated.

55

11.3.2 Step k + 1: re-initialization of bk

We suppose we know bk ∈ RR and λk ∈ (R+)R+1. Then, a gradient descent is implemented.
We introduce a new bottom capable of decreasing sufficiently the functionnal b→ L(b, λk) in
the optimal local direction dL(bk, λk) 2.

bk+1 = bk − γdL(bk, λk)

We have to choose a correct γ ∈ R and that is an hard task. The ideal case would
be the minimum of the function Ψ : γ → L

(
bk − γdL(bk, λk), λk

)
on the entire set R but

the evaluation of the function at one point needs each time to solve two partial differential
equations.

Moreover, if the γ is negative and too important, the bottom will become negative and
will leave the admissible set. If it is positive and too big, the bottom will be too high and
will violate the physical limit of the fKdV model. Therefore, we must restrain the choice of γ
in a small interval and find the minimum of Ψ on it.

11.3.3 Choice of γ

We can first see the γ as a rescaling between dL(bk, λk) compared to bk. Hence, we first choose
the following value :

γ0 = 10Ent[log10(bk)]−Ent[log10(dL(bk,λk),λk)]−2

which basically impose that γdL(bk, λk), λk) is two orders of magnitude less than bk. I then
evaluate Ψ (−γ0) and Ψ (γ0). As I know three point with Ψ (0), an interpolation with a
polynom of degree two is done on Ψ and the minimum γopt is found on the interval [−γ0, γ0].

This evaluation procedure is justified in the case of our problem. Indeed, we studied
precisely the function Ψ during many phases of the algorithm and it turns out that Ψ profile
is close to a parabola. The interpolation is then cheap in time and efficient in this case.

Figure 11.2: Profile of the function Ψ and its interpolation on a large interval.

2We recall here that the functionnal is an integral evaluated by the Simson rule described above.

56

11.3.4 Step k + 1: re-initialization of λk

We then compute easily the projection of the solution in the space (R+)R+1. This gives in
term of vectors:(
λk+1

)∗
= max

(
0 ,

(
λk
)∗ − κbk+1

)
and λk+1

R = max

[
0 , λkR + κ

(∫
R
bk+1 2 −M2

)]
where κ is a parameter that the user has to fix so as to make the two term of the same
order of magnitude. This parameter rules how much you want the constrains to penalize the
functionnal in the optimization process.

11.3.5 Choice of κ

This is the hardest part of the algorithm because it can only converge for an appropriate κ
which is a computational parameter, completly independant of the physical problem. More-
over, we observed that the lagrangian and the functionnal are very sensitive to this parameter.

Figure 11.3: Profile of the functionnal during many iterations of the algorithm. We can
observe the highly oscillating behaviour of the functionnal J and the non-convergence of the
algorithm. A periodicity is even visible here for κ = 10 000.

Indeed, on the one hand, if the κ is too small, the constraints will act very late in the
process of penalization which means high oscillations and no chance of convergence for the
algorithm.

57

On the other hand, if the value of κ is too high, the constraints will be immediatly
significant leading to an instability of the program. During one iteration λ = 0 and during
the next one λ > 0 will be very high leading again to the case λ = 0. In conclusion, oscillations
will be again observed.

In our context, the right κ values are located around 30 000. To make the algorithm
converge, its value depends on the initial bottom b0 which make the task even more difficult.
In the table below, we put the accurate value of κ found for each of our initial bottoms.

Initial bottom Value of κ
Two semi-ellipse 30 100
Triangle 30 200
Cube 30 100
Bowl 29 000
Inverse triangle 29 000
Cosinus 30 000

Figure 11.4: Example of convergence for a cosinus initial profile.

Finally, an interpretation of the algorithm behaviour can be found. We know that the
functionnal is very sensitive to the bottom height. A little perturbation of the first generates
high one of the second. That is why the convergence is difficult to obtain and oscillations are
omnipresent in the algorithm.

58

11.3.6 Stop criteria

The stop criteria leads to another precision parameter to fix denoted ι. It depends on the
precision on the bottom you want to impose. We can stop where these three conditions are
fulfilled : 

bk+1 ∈ B

max
06i6N−1

(
bk+1
i − bki

)
< 10−ιb

max
06i6N−1

(
λk+1
i − λki

)
< 10−ιλ

11.4 Results obtained from the algorithm

We present in the table below all the values taken for the parameters in the algorithm.

Parameter Notation Value
Water depth h0 1 m
Gravity acceleration g 9.81 m.s−2

Froude number Fr 1
L2-upper bound for bottom M2 0.02 m4

Penalization parameter κ ∼ 30 000
Bottom support [−S, S] [−1 m, 1 m]
Space step ∆ξ 0.1 m
Spatial domain [−L,L] [−50 m, 50 m]
Time step ∆t 0.1 s
Final time T 30 s

The graphic above sums up the situation. Our algorithm has been tried on many initial
bottoms and it converges almost to the same optimal bottom. This numerically proves the
existence and uniqueness of a solution to our optimization problem.

Figure 11.5: Results obtained via the optimization algorithm.

59

Chapter 12

The influence of parameters

We study here the influence of various parameters that where fixed before in the algorithm.
We improve the efficiency of the wave maker by a tuning of the Froude number. We then
show the limit of our model and try to minimize the energy necessary to create the wave.
Finally, we study the influence of the admissible set of solution on the optimal shape.

12.1 The role of the Froude number

The Froude number is defined as the ratio between the speed U of the bottom to the reference
speed c0 =

√
gh0 of the waves. Some questions arise about why this ratio must be taken

close to the unity. Indeed, let’s recall its influence in the case of a monodimensional linear
hydrostatic flow described in [2] .

12.1.1 Physical meaning of the Froude number

Incompressible, homogeneous inviscid fluid

We recall the equations for the motion of an incompressible, homogeneous inviscid fluid with
constant density ρ : 

D−→u
Dt

= −1

ρ

−→
∇P +−→g

−→
∇ .−→u = 0

where D/Dt is the material derivative, −→u = (u, v, w)T with components in the cartesian
directions (x, y, z) respectively. We assume that some bottom topography is present and has
the form z = −h0 + b (x, y), with a base level at z = −h0. The boundary condition of zero
velocity normal to this surface may then be expressed as :

w = −→u .
−→
∇h on z = −h0 + b (x, y)

The fluid has an upper free surface at the mean level z = 0, with a displacement of
equation z = ζ (x, y, t). The mass of any fluid located above is negligible so that the pressure
at the surface is constant. Consequently, we have :

P = Pa
on z = ζ (x, y, t)

w =
Dζ

Dt

60

Hydrostatic flow

The curl of the equation of motion gives the vorticity equation D−→ω /Dt = −→w .
−→
∇−→u , and if

−→ω =
−→
∇ × (−→u) = 0 initially it remains so, and the motion is irrotational throughout. If

the vertical accelerations Dw/Dt are everywhere much less than gravity, the motion is said
hydrostatic, so that :

−1

ρ

∂P

∂z
− g = 0

If the horizontal scale of the fluid is λ, simple scale analysis shows that this approximation
holds if ε = (h0/λ)2 << 1. We then have P = Pa + ρg (ζ − z) within the fluid, and the
horizontal pressure gradient is independant of z. Hence, if u and v are initially independant
of z, they will remain so. This independance and the formula for P applied on the equations
of motion gives :

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z︸︷︷︸
=0

= −1

ρ

∂P

∂x︸︷︷︸
=ρg(∂ζ/∂x)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z︸︷︷︸
=0

= −1

ρ

∂P

∂y︸︷︷︸
=ρg(∂ζ/∂y)

w|z=ζ︸ ︷︷ ︸
=(Dζ/Dt)

−w|z=−h0+b︸ ︷︷ ︸
=−→u .

−→
∇b

=

∫ ζ

−h0+b

∂w

∂z
dz = −

∫ ζ

−h0+b

(
∂u

∂x
+
∂v

∂y

)
dz︸ ︷︷ ︸

=(∂u/∂x + ∂v/∂y)(ζ+h0−b)

which can be rewriten in a synthetic form. The suffices denote derivatives and h = h0+ζ−b the
thickness of the fluid layer. We then obtain the equations of motion for a classical hydrostatic
flow : 

ut + uux + vyy = −gζx

vt + uvx + vvy = −gζy

ζt + (hu)x + (hv)y = 0

Linear flow

We now consider a uniform stream of velocity U in the x-direction, and insert a long obstacle
with small height of the form z = b (x, y) into this stream, by uplift from below. Linearising
the previous equation about this initial state gives u = U + δu and :

(δu)t + U (δu)x = −gζx

vt + Uvx = −gζy

ζt + Uζx + h0 ((δu)x + vy) = Ubx

61

One-dimensional flow

Finally, if we assume the monodimensionnal hypothesis (b independant of y), then the result-
ing flow will have v = 0 everywhere. Eliminating δu and v gives the evolution equation for ζ
and with the initial data, the problem takes the form :

[
∂

∂t
+
(
U −
√
gh0

) ∂

∂x

] [
∂

∂t
+
(
U +
√
gh0

) ∂

∂x

]
ζ = U2 ∂

2b

∂x2

ζ (x, y, 0) = b (x, y)

∂ζ

∂t
(x, y, 0) = 0

The sudden introduction of the obstacle results in an instantaneous potential flow, which
causes a deformation of the interface but does not immediatly alter the fluid velocity. This
system has one dimensionless parameter : the Froude number Fr for the undisturbed flow,
defined by :

Fr =
U√
gh0

which is the ratio of the flow speed U to the speed of long gravity waves on stationary fluid
of depth h0. The solution to the problem above can be found by the standard method of
characteristics.

The role of the Froude number

We can immediatly see that one has to distinguish between two cases : if Fr = 1 or not. We
have :

ζ (x, t) =
F 2
r

F 2
r − 1

b (x) +
1

2

[
b
(
x−

(
U +
√
gh0

)
t
)

Fr + 1
−
b
(
x−

(
U −
√
gh0

)
t
)

Fr − 1

]

provided that Fr 6= 1. The solution consists of a steady component over the obstacle and
two waves, the one with larger amplitude porpagating against the stream and the other with
smaller amplitude with it. All the three terms have the form of the obstacle itself and the two
wave terms are functions of the characteristic variables. Therefore, the larger wave appears
on the upstream side if Fr < 1 and on the downstream side if Fr > 1.

The solution becomes singular as Fr → 1, and cannot be valid near this point because the
linearisation assumption of small amplitude is violated. For Fr = 1, the solution is given by :

ζ (x, t) =
Ut

2

∂b

∂x
+

1

4
b (x− 2Ut) +

3

4
b (x)

Here, the flow over the obstacle grows linearly with time, but the downstream-propagating
wave is unaffected. This singular behaviour arises because the forcing by the obstacle resonates
with the upstream-propagating wave. For this resonant case, there is an associated drag force
on the obstacle, whereas there is no drag in the steady state for Fr 6= 1. That is why we
search Fr around the unity in the derivation of the forced KdV equation.

62

12.1.2 The supercritical case to enhance the efficieny of the wave
maker

In the figure below, the behaviour of the solitary wave height generated by the optimal bottom
is studied according to the Froude number Fr. We can clearly see that in the supercritical
case, there is an maximum around Fr ≈ 1.2, a value that is still in the physical limit of the
fKdV model. Therefore, a tuning of the bottom speed has to be done so as to obtain a higher
wave and this value is around 1.2 c0.

Figure 12.1: The dependancy of the optimal wave height according to the Froude number. he
optimal value seems to be for Fr = 1.2.

63

12.2 Some energetic considerations and weakness of the

fKdV model

12.2.1 A comparison between the cube and the optimal profile

When the height of the wave produced by the optimal bottom and by the cube are compared,
we can immediatly that from an mathematical point of view, the optimal bottom generates
a higher wave than the cube profile.

However, from an engineering point of view and taking in account all the errors commited
during the discretization process, the difference between them is negligible. Moreover, a cube
is much more faster to built than the complicated profile of the optimal bottom. Therefore,
some other argument have to be found.

Figure 12.2: The comparison between the wave elevation of the cube and the one of the optimal
bottom. The difference is physically negligible.

12.2.2 The weakness of the model : the inviscid assumption

From an engineering point of view, if two bottoms are able to produce the same waves, their
preference will go to the one that can generate it with the less energy as possible. Therefore,
the most aerodynamical shape will be chosen that is our potimal bottom.

However, our model assume that the fluid is inviscid. Most of the energy necessary to
the wave generation comes from the adherence of the moving bottom on the viscuous fluid

64

(water). Therfore, this inviscid assumption does not allow the access to this energy and the
viscuous effects are crudely taken in account.

This highlights maybe one of the weakness of the fKdV equation. Although it is known
for modeling very well the real phenomena over a wide domain of physical validity, this model
does not capture the viscuous effects. Consequently, the effects of the shape is less taken in
account than it should, especially in the optimization process.

12.2.3 The influence of the shape on the drag coefficient

Nevertheless, a certain part of this energy is accessible via the model. A drag which corre-
sponds to the resistance due to unsteady wave making can be evaluated. Denoted Dw by Wu
in [20], the drag experienced by the moving disturbance is given by the formula :

Dw (t) =

∫ S

−S
b (ξ)

∂ζ

∂ξ
(ξ, t) dξ

This definition is essentially based on the fKdV rule of equivalence between a pressure
disturbance p (ξ) = p (x− Ut) and a bottom one b (ξ). Indeed, the fKdV equation treats
the two cases in the same way, included in the forcing term of the equation, whereas the
generalized Boussinesq model treats them differently in its equations.

Then, in his article, Wu defined the associated drag coefficient CDw and shows that for
positive forcing, the drag coefficient oscillates nearly sinusoidally about a positive mean value
CDw and get an estimation of it via the soliton height a :

CDw (t) =
Dw (t)

2ρgh0S
and CDw =

a3

4

Figure 12.3: The time evolution of the drag coefficient for various bottoms. We can see that
the initial bottoms that generate a higher wave will have a higher drag mean.

65

This traduces a physical observation : if you want a higher wave, you will need more
energy. If this coefficient captures this phenomena, one can ask how well the model capture
in this drag coefficient the shape influence on the total energy used to operate the wave
maker. Unfortunately, the graphic below shows that there is no real shape influence on the
drag coefficient. However, it is clear that the optimal shape is more aerodynamical than the
cube.

Figure 12.4: The comparison between the drag coefficient of the optimal bottom and the one
of a cube that gives the same wave profile. The difference is physically negligible.

12.3 The influence of the admissible set of solutions

The remarks made in the previous section shows that in a certain way, our optimization
problem seems to be mathematically well-posed because the algorithm converges to a unique
solution. However, is this optimal bottom physically more efficient than a cube ?

The graphic below reassures us about the physical pertinence of the shape obtained by
the algorithm. We compared the shape derivative of the functionnal with the shape of the
optimal bottom. We can clearly see that there are really close.

The shape derivative of the functionnal obtained via the adjoint formulation is a continuous
approach which is rigorous theoretically. This gives us the local directions where the bottom
wants to be modified in order to minimize the functionnal. The similarities between the two
graphs is a good sign for the physical efficiency of the optimal bottom.

Nevertheless, if the optimal bottom b looks like the shape derivative of J , it means that
the optimization has been done in a space where the constraints were adapted in the sense
that they were just acting in order to maintain the bottom height to a reasonnable elevation.

66

Figure 12.5: The comparison between the shape of the optimal bottom b (ξ) and the shape
derivative of the functionnal dJ (b) rescaled by 10Ent[log10(max b)]−Ent[log10(max dJ)] in order to be
of the same order of magnitude.

Therefore, the admissible set of solutions has been of first importance. Let’s now define
a new admissible set of solutions. First, the positive assumption cannot be neglected for
practical reason : a negative bottom can’t be physically and safely translated in a pool.

Then, the support has always been fixed to [−1, 1]. This localization cuts the optimal
bottom shape in a crude way. However, a tuning of the support can be done in order to get
a smooth bottom profile, more aerodynamic, and that will improve the wave height. To find
this accurate support, it can be usefull to look at the graph of the shape derivative of the
function dJ as its profile is close to the one of the optimal bottom.

Finally, the norm can be changed so as to see how much the set influence the optimal
shape. We can distinguish two opposite points of view :

1. The L1-norm will bound the area of the bottom. Therefore, as the wave elevation is
more sensitive to the bottom height than its shape, the dirac will be the optimal bottom
found for this norm.

2. The L∞-norm will bound the bottom pointwisely. Therefore, as we have already seen,
the optimal bottom will be a cube.

The L2-norm is a balance between these two extrema and it seems to be the right one in
physical term. On the graphic below, we plotted the optimal bottom for three intermediate

67

space : L1.5, L2 and L4. This illustrates perfectly the influence of the admissible space on the
shape of the optimal bottom.

Figure 12.6: The influence of the space on the shape of the optimal bottom.

68

Conclusion

The project Instant Surfing led to the development of a new wave maker : a bottom is
translating underwater in a pool. Invited by BCAM for a workshop on computational fluid
dynamics, the prototype was presented. During my internship, I studied the forced Korteweg-
de Vries equation to model the observed phenomena and I obtained an optimal shape for the
bottom that would create the highest wave.

The accuracy of the forced KdV model

First, the fKdV equation seems to be the most adapted model to study the wave maker.
Indeed, it uses the fact that the steady translation of the bottom is unidirectionnal and
unidimensionnal. It takes in account the non-linear and dispersive effects to a certain extend.
Moreover, besides its simplicity, it provides results very close from what have been observed
during experiments and over a wide domain of validity (h2

0 = 0.5λ2).

Then, the model shows that the solitary wave produced upstream the disturbance is a
soliton. It means a very stable wave that can travel over very large distances without changing
its initial form. Moreover, given a certain water depth h0, its shape is only ruled one degree
of freedom : its height a.

Finally, we know its speed from the relation c2 ∼ g (h0 + a). After some time, the soliton
becomes autonomous and goes faster than the bottom. We have an estimation for the period
of generation τ = 64\ (3a)1.5. Therefore, after the time τ , it is possible to stop the bottom :
the wave is generated. Moreover, higher is the wave and less time is needed to produce it.

The influence of parameters

First, Instant surfing prototype seems to consume less energy than a classical wave maker
based on the drop of accelerated water in a pool. However, like every inviscid model, the
fKdV model does not allow an access to the energy needed for the translation of the bottom.
Indeed, most of the dissipated energy comes from the adherence of the moving bottom to the
water. We can only evaluate a non-significant part of this energy with a drag Dw experienced
by the moving bottom. It corresponds to the resistance due to the unsteady wave making.
However, this drag coefficient seems not to be influenced by the shape of the bottom in the
fKdV model whereas a more aerodynamical shape of the bottom would reduce significantly
the energy needed for the wavemaker operation.

Then, the height of the generated wave is very sensitive to the bottom one. Indeed, there
is a quasi-linear dependance between them. Therefore, in order to stay in the validity of the
fKdV model, the pool must be as deep as it can, taking in account the economic constraints

69

due to the water and maintenance. Therefore, if the water depth is bigger, the fKdV model
ensures a higher limit for the bottom height implying a higher wave produced.

Finally, the solitary wave can be produce only if the bottom is moving steadily at a
transcritical speed c0 =

√
gh0. The Froude number Fr defined by the ratio of the bottom

speed to c0 must be close to the unity to generate a soliton. This parameter modifies the
repartition of the bottom energy in the three regimes observed from the fKdV model : cnöıdal-
like waves downstream, depressed water surface and solitons upstream. Taking Fr a bit greater
than 1 will dedicate more energy to the solitary wave, producing a higher one. However, if
it is too far from 1, the fKdV model is not valid anymore and the wave height decreases.
Therefore, there is an optimal value for Fr close to the 1.2 that produce higher wave than the
classical case Fr = 1.

The influence of shape

The Usawa algorithm depends on a numerical parameter κ that must be close to 30 000 in
order to ensure the convergence of the program. However, its value depends of the initial
bottom chosen. We obtained a unique optimal shape from a wide range of initiam bottoms.
This reinforces this idea that there exists a unique global optimal bottom for our optimization
problem and that it is the one found by the algorithm.

However, the optimal shape depends a lot on the admissible set of bottoms. Indeed, we
decided to find it between the L2 integrable and positive bottoms whose L2-norm is upper
bounded. A change of the admissible space would completly modify the optimal shape. A
space closer to L1 will tend to produce a dirac shape whereas a space closer to L∞ would give
a cube. This highlights that our optimal shape is a solution of our mathematical problem but
maybe physically far from the real desired shape. Fortunately, the L2-norm is the intuitive
one related to the physical energy of the system. Therefore, some experiments should be done
to see if this shape really enhances the performance of the wave maker in term of energy and
of wave height.

Finally, in the algorithm, we decided to localize the bottom to a certain support that
really cut the shape. An appropriate support has to be found so as to get smoothly to the
pool ground. Furthermore, we showed that a cube that has a L2-norm negligibly bigger
than the constraints imposed on the admissible set would create the same wave height than
the optimal bottom found. Mathematically, this bottom is not in the admissible space but
physically would be easier to build. Only economic argument based on the energy needed to
produce the wave could decide between those two. We hope the optimal shape we found has
a physical reality and not only the denomination of solution to our mathematical problem.
Only experiments could tell.

To conclude, the fKdV model is accurate for such a wave maker. It gives a lot of answers
about the comprehension of the observed phenomena. If we solved our mathematical problem,
the main default of the model is the inviscid-flow hypothesis that reduces a lot the shape
influence on the generation of the solitary wave. In order to better the results obtained
in this report, only a viscuous model could improve them and gives some answers to what
experiments could tell.

70

Part V

Annexes

71

Chapter 13

The Zabusky and Kruskal historical
simulation of KdV equation

We reproduced the work of N.J. Zabusky and M.D. Kruskal they published in 1965 in a paper
named Interaction of solitons in a collisionless plasma and the recurrence of initial states.
They observed unusual nonlinear interaction in the numerical solution of the Korteweg-de
Vries equation :

ut + uux + δ2uxxx = 0.

13.1 Description of the phenomena

We have a nonlinear process in which interacting localized pulses do not scatter irreversibly.
As the third dispersive term is small at the beginning because δ = 0.022, the equation is

almost the Burger’s one and u tends to become discontinuous at Tb ∼
1

π
: the breakdown

time. Then, the third term becomes stronger and appears a series of solitons that are going
to travel independently. Finally, at the recurrence time Tr ∼ 30.4Tb, all the solitons almost
reconstruct the initial state.

13.2 Description of the Matlab code

We are using a leap-frog scheme in time and a finite difference scheme in space that conserved
mass and energy to second order. First, we discretize first the space variable x and the time
variable t according to a CFL condition adapted to the scheme we are using.

N = 100, ∆x =
1

N

[0, 2[≈ {x0, ..., xi, ..., x2N−1}

∀i ∈ {0, ..., 2N − 1} , xi = i∆x

and



∆t 6
∆x3

4 + ∆x2 maxu

[0,+∞[≈ {t0, ..., tj, ...}

∀j ∈ N, tj = j∆t

Then, we computed this scheme on Matlab denoting uji = u (xi, tj), using a trick as a second

72

numerical initial state is needed.

u0
i = cos (πxi)

u1
i = cos [π (xi − u0

i∆t)]

uj+1
i − uj−1

i

2∆t
+

uji+1 + uji + uji−1

3

uji+1 − u
j
i−1

2∆x
+ δ2

uji+2 − 2uji+1 + 2uji−1 − u
j
i−2

2∆x3
= 0

uji = uji+2N

Finally, as the scheme was becoming unstable after a certain time, every two time steps, we
were using Robert-Asselin time filter. If we write the scheme as uj+1 = uj−1 + F (uj), then
we have : 

û1 = u1, û2j+1 = u2j+1 + 0.01 (u2j+2 − 2u2j+1 + u2j)

u2j = u2j−2 + F
(
û2j−1

)
u2j+1 = û2j−1 + F (u2j)

13.3 Matlab code

function zabusky kruskal()

clear all;
close all;

Running time=cputime;

Data

N = 100;
δ = 0.022;

Tb =
1

π
;

Tr = 30.4Tb;
Tmax = 1.1Tr;

Spatio-temporal vectors

∆x =
1

N
;

X = 0 : ∆x : 2−∆x;
LongX = length(X);

∆t =
∆x3

4 + 10∆x2
;

73

Initialization

U0 = cos (πX) ;
Compteur = 1;

figure;
hold on;
plot(X,U0);
plot(X, 5 + 0.X,’k’);
plot(X,−3 + 0.X,’k’);
xlabel(’Space variable x ’);
ylabel(’Elevation u ’);
legend(’t = 0 h’);
title({’Numerical simulation realized by N.J. Zabuski and M.D. Kruskal in 1965’,’
’,’Interaction of solitons in a collisionless plasma and the recurrence of initial
states’,’ ’,[’N = ’,num2str(N),’ δ = ’,num2str(δ),’ Tb = ’,num2str(Tb),’ Tr = ’,num2str(Tr),’
CFL = ∆t = ’,num2str(∆t)],’ ’});
saveas(gcf,[’soliton’,num2str(Compteur),’.jpg’],’jpg’);
close;

U=zeros(LongX, 2);
Boucle=[U0’, cos (π (X − U0∆t))’];

Temporal loop

for j = 1:floor

(
Tmax
∆t

)
Ui−2 = [Boucle(end-1:end,2);Boucle(1:end-2,2)];
Ui−1 = [Boucle(end,2);Boucle(1:end-1,2)];
Ui+1 = [Boucle(2:end,2);Boucle(1,2)];
Ui+2 = [Boucle(3:end,2);Boucle(1:2,2)];

U(:,1) = Boucle(:,1) -
∆t

3∆x
(Ui−1+ Boucle(:,2) +Ui+1) .* (Ui+1 − Ui−1)

-
δ2∆t

∆x
(Ui+2 − 2Ui+1 + 2Ui−1 − Ui−2);

Ui−2 = [U(end-1:end,1);U(1:end-2,1)];
Ui−1 = [U(end,1);U(1:end-1,1)];
Ui+1 = [U(2:end,1);U(1,1)];
Ui+2 = [U(3:end,1);U(1:2,1)];
U(:,2) = Boucle(:,2) + 0.01(U(:,1) - 2 Boucle(:,2) + Boucle(:,1))

∆t

3∆x
(Ui−1 + U(:,1) +Ui+1) .* (Ui+1 − Ui−1)

-
δ2∆t

∆x
(Ui+2 − 2Ui+1 + 2Ui−1 − Ui−2);

Boucle = U ;

if mod

[
j, floor

(
0.1 Tb
2∆t

)]
== 0

Compteur = Compteur + 1;

74

figure;
hold on;
plot(X,U(:,2)’);
plot(X, 5 + 0.X,’k’);
plot(X,−3 + 0.X,’k’);
xlabel(’Space variable x ’);
ylabel(’Elevation u ’);
legend([’t =’,num2str(2j∆t)]);
title({’Numerical simulation realized by N.J. Zabuski and M.D. Kruskal
in 1965’,’ ’,’Interaction of solitons in a collisionless plasma and the recurrence
of initial states’,’ ’,[’N =’,num2str(N),’ δ = ’,num2str(δ),’ Tb = ’,num2str(Tb),’ Tr =’,
num2str(Tr),’ CFL = ∆t = ’,num2str(∆t)],’ ’});
saveas(gcf,[’soliton’,num2str(Compteur),’.jpg’],’jpg’);
close;

end;

if max(max(U)) > 100;
break;

end;

end;
Temps2calcul = cputime - Running time;

75

Chapter 14

The Whitham and Fornberg
simulation of the KdV equation

We reproduced the work of B. Fornberg and G.B. Whitham they published in 1977 in a
paper named A numerical and theoretical study of certain nonlinear wave phenomena. They
implemented a numerical spectral method for the 2π-periodic initial value problem pf the
Korteweg-de Vries equation :

ut + uux + uxxx = 0

14.1 Description of the Matlab code

We are using a leap-frog scheme in time and a spectral method for space. First, we discretize
first the space variable x and the time variable t according to a CFL condition adapted to
the scheme we are using.

N = 10, ∆x =
π

N

[0, 2π[≈ {x0, ..., xi, ..., x2N−1}

∀i ∈ {0, ..., 2N − 1} , xi = i∆x

and


∆t 6

3∆x3

2π2

[0,+∞[≈ {t0, ..., tj, ...}

∀j ∈ N, tj = j∆t

Then, we computed this scheme on Matlab denoting uji = u (xi, tj), using a explicit Euler
method for the second numerical initial state.

u0
i = asech2

[
1

2

√
a

3

(
x− a

3
t
)]

u1
i = u0

i − i∆tu0
iF−1 [νF (u)]0i + iF−1 [sin (ν3∆t)F (u)]

0
i

uj+1
i = uj−1

i − 2i∆tujiF−1 [νF (u)]ji + 2iF−1 [sin (ν3∆t)F (u)]
j
i

uji = uji+2N

76

14.2 Matlab code

function whitham fornberg()

close all;
clear all;
Temps2calcul = cputime;

Data

L = 12;
g = 9.81;
h0 = 1;
c0 =

√
gh0;

a = 0.2;

c =
c0a

2h0

;

Spatio-temporal discretization

∆x = 0.1;
X = -L:∆x:L−∆x;
LongX = length(X);

Tmax = 10;

∆t =
3

2π2

(
π∆x

L

)3

;

Tgraph = 0.1;

jgraph = floor

(
Tgraph

∆t

)
+ 1;

Initialization

Compteur = 1;

b =
1

2h0

√
3a

h0

;

U0 = asech2 (bX));
U0 = U ′0;
fftU0 = fft(U0);

N =
1

2
length(U0);

ν = [0:N,-N + 1:-1];
ν = ν ′;

U1 = U0 −
3i∆tπc0

Lh0

U0 .* ifft(fftU0 .* ν) +
3iπ3h2

0c0

3L3
ifft(fftU0 .* sin(∆tν .ˆ 3));

U1 = real(U1);
Udouble = [U0 U1];
Udata=zeros(0,0);

77

Temporal loop

for j = 3:floor

(
Tmax

∆t

)
+ 1

fftUdouble=fft(Udouble(:,2));

U = Udouble(:,1) −3i∆tπc0

Lh0

Udouble(:,2) .* ifft(fftUdouble .* ν)

+
3iπ3h2

0c0

3L3
ifft(fftUdouble .* sin(∆tν .ˆ 3));

U = real(U);
Udouble = [Udouble(:,2) U];
if mod(j,jgraph) == 0

Compteur=Compteur+1
Udata = [Udata U];
if max(max(Udata))¿100

break;
end;

end;

end;
Temps2calcul=cputime-Temps2calcul;

78

Chapter 15

The Matlab code of the optimization
algorithm

We give here the optimization algorithm described in the report. It is divided into height
parts :

1. the fKdV solver ζ (b);

2. the adjoint solver v (ζb);

3. the evaluation of the functionnal J (b) ;

4. the evaluation of the lagrangian L (b, λ) ;

5. the computation of the shape derivative dJ (b) ;

6. the computation of the lagrangian derivative dL (b, λ) ;

7. the projecteur sur l’espace des λ ;

8. le solveur du problme d’optimisation.

15.1 The fKdV solver

function Udata=fKdV(F,h0,c0,Fr,∆x,∆t,Tmax,X,longX,L)

U = 0.X’;
Udata=U;

Fxx =
1

∆x2
[F(2), - 2 F(1) diff(F,2), - 2 F(end) + F(end-1)];

for j=1:floor

(
Tmax

∆t

)

Ai±2 = − h2
0

6∆x4
;

Ai−2 = [Ai±2 ones(longX-2,1);0;0];
Ai+2 = [0;0;Ai±2 ones(longX-2,1)];

Ai−1 =
1

c0∆t∆x
+
Fr − 1

∆x2
− 3

2h0∆x2
U(1:end-1) +

2h2
0

3∆x4
;

79

Ai−1 = [Ai−1;0];

A = −2 (Fr − 1)

∆x2
+

6U

2h0∆x2
− h2

0

∆x4
;

Ai+1 = − 1

c0∆t∆x
+
Fr − 1

∆x2
− 3

2h0∆x2
U(2:end) +

2h2
0

3∆x4
;

Ai+1 = [0;Ai−1];

C = spdiags(Ai−2,-2,longX,longX);
C = C + spdiags(Ai−1,-1,longX,longX);
C = C + spdiags(A,0,longX,longX);
C = C + spdiags(Ai+2,1,longX,longX);
C = C + spdiags(Ai+2,2,longX,longX);

B = Fxx’;

B = B +
h2

0

6∆x4
[0;0;U(1:end-2)];

B = B +
1

c0∆t∆x
− Fr − 1

∆x2
− 2h2

0

3∆x4
[0;U(1:end-1)];

B = B +
2 (Fr − 1)

∆x2
+

h2
0

∆x4
U;

B = B -

[
1

c0∆t∆x
+
Fr − 1

∆x2
=

2h2
0

3∆x4

]
[U(2:end);0];

B = B +
h2

0

6∆x4
[U(3:end);0;0];

U = C \ B;

U = U .* (
1

2

[
1 + cos

(
X ′ + L− 20

20

)]
.*(X’>-L).*(X’6-L+20) + (X’ ¿ -L+20).*(X’6L));

Udata = [Udata U];

if max(max(U))> 1000
break;

end;

end;

15.2 The adjoint solveur

function Vdata=adjoint(Udata,h0,c0,Fr,∆x,X,LongX,∆t,L)

jmax = size(Udata);
jmax = jmax(2);
V=0.X’;
Vdata=V;

Ux =
1

2∆x
[Udata(2,:);Udata(3:end,:)-Udata(1:end-2,:);-Udata(end-1,:)];

for j = 1:jmax - 1

Ai±2 = − h2
0

12∆x4
;

Ai−2 = [Ai±2.ones(longX-2,1);0;0];
Ai+2 = [0;0;Ai±2.ones(longX-2,1)];

80

Ai−1 =
−1

2c0∆t∆x
+
Fr − 1

2∆x2
+

3

8h0∆x
Ux(2:end,jmax-j) -

3

4h0∆x2
Udata(2:end,jmax-j) +

h2
0

3∆x4
;

Ai−1 = [Ai−1;0];

A = −Fr − 1

∆x2
+

3

2h0∆x2
Udata(:,jmax-j) -

h2
0

2∆x4
;

Ai+1 =
0.5

c0∆t∆x
+
Fr − 1

2∆x2
− 3

8h0∆x
Ux(1:end-1,jmax-j) -

0.75

h0∆x2
Udata(1:end-1,jmax-j) +

h2
0

3∆x4
;

Ai+1 = [0;Ai+1];

C = spdiags(Ai−2,-2,LongX,LongX);
C = C + spdiags(Ai−1,-1,LongX,LongX);
C = C + spdiags(A,0,LongX,LongX);
C = C + spdiags(Ai+1,1,LongX,LongX);
C = C + spdiags(Ai+2,2,LongX,LongX);

B = −1

2
(Ux(:, jmax − j) + Ux(:, jmax − j + 1));

B = B +
h2

0

12∆x4
[0;0;V(1:end-2)];

B = B +

[
− 1

2c0∆t∆x
− Fr − 1

2∆x2
− 3

8h0∆x
Ux(:, jmax − j + 1)

+
3

4h0∆x2
Udata(:, jmax − j + 1)− h2

0

3∆x4

]
.* [0;V(1:end-1)];

B = B +

[
Fr − 1

∆x2
− 3

2h0∆x2
Udata(:, jmax − j + 1) +

h2
0

2∆x4

]
.* V;

B = B +

[
1

2c0∆t∆x
− Fr − 1

2∆x2
+

3

8h0∆x
Ux(:, jmax − j + 1)

+
3

4h0∆x2
Udata(:, jmax − j + 1)− h2

0

3∆x4

]
.* [V(2:end);0];

B = B +
h2

0

12∆x4
[V(3:end);0;0];

V = C\B;

V = V .*
1

2

[
1 + cos

(
π(X ′ + L− 20)

20

)]
. ∗ (X ′ > −L). ∗ (X ′ 6 −L+ 20)

+(X ′ > −L+ 20). ∗ (X ′ < L− 20)

+
1

2

[
1 + cos

(
π(X ′ − L+ 20)

20

)]
. ∗ (X ′ >= L− 20). ∗ (X ′ <= L));

Vdata = [V Vdata];

if max(max(V)) > 1000
break;

end;

end;

81

15.3 Evaluation of the functionnal

function Jb = functionnal(Udata,Tmax,∆t,∆x,LongX)

S = zeros(1,floor

(
Tmax

∆t

)
+ 1);

S(1) = 1;

S(2:2:end-1) = 4 ones(1,
1

2
floor

(
Tmax

∆t

)
);

S(3:2:end-2) = 2 ones(1,
1

2
floor

(
Tmax

∆t

)
-1);

S(end) = 1;

S =

(
∆t

3

)
ones(longX,1) S;

I = S .* Udata .ˆ 2;
I=sum(I’);

SS = zeros(1,LongX);
SS(1) = 1;

SS(2:2:end-1) = 4 ones(1,floor

(
LongX − 1

2

)
;

SS(3:2:end-2) = 2 ones(1,floor

(
LongX − 1

2

)
) - 1);

SS(end) = 1;

SS =
∆x

3
SS;

Jb = SS .* I;
Jb = sum(Jb);

Jb = -
1

2
Jb;

15.4 Evaluation of the lagrangian

function Lag=lagrangien(F,Jb,λ,L,∆x,M,supp)

S = zeros(floor

(
L+ supp

∆x

)
- floor

(
L− supp

∆x

)
+ 1,1);

S(1) = 1;

S(2:2:end-1) = 4 ones(floor((floor

(
L+ supp

∆x

)
) -

1

2
floor

(
L− supp

∆x

)
+ 1),1);

S(3:2:end-2) = 2 ones(floor((floor(

(
L+ supp

∆x

)
-

1

2
floor

(
L− supp

∆x

)
- 1,1);

S(end) = 1;

S =
∆x

3
S;

I = F(floor

(
L− supp

∆x

)
+ 1:floor

(
L+ supp

∆x

)
+ 1) .ˆ 2 S;

I = sum(I);

82

Lag = Jb - F(floor

(
LongX − supp

∆x

)
+ 1:floor

(
LongX + supp

∆x

)
) λ(1:end-1) + λ(end)*(I-

M);

15.5 Computation of the shape derivative of the func-

tionnal

function dJ = d J(Vx,∆t,Tmax,X,LongX,supp)

S = zeros(1,floor

(
Tmax

∆t

)
+ 1);

S(1) = 1;

S(2:2:end-1) = 4 ones(1,
1

2
floor

(
Tmax

∆t

)
);

S(3:2:end-2) = 2 ones(1,
1

2
floor

(
Tmax

∆t

)
- 1);

S(end) = 1;

S =
∆t

3
ones(LongX,1) S;

I = S .* Vx;
I = sum(I’);

dJ =
1

2
I .* (X > −supp) .* (X 6 supp);

dJ = dJ’;

15.6 Computation of the lagrangian derivative

function dL=d L(dJ,F,λ,L,∆x,supp)

dL = dJ - [zeros(floor

(
L− supp

∆x

)
,1);λ(1:end-1);zeros(floor

(
L− supp

∆x

)
,1)] + 2*λ(end) F’;

15.7 Computation of the positive projector

function llambda=lambda projete(FF,λ,L,∆x,M,κ,supp)

S = zeros(floor

(
L+ supp

∆x

)
- floor

(
L− supp

∆x

)
+ 1,1);

S(1) = 1;

S(2:2:end-1) = 4 ones(floor((floor

(
L+ supp

∆x

)
) -

1

2
floor

(
L− supp

∆x

)
+ 1),1);

S(3:2:end-2) = 2 ones(floor((floor(

(
L+ supp

∆x

)
-

1

2
floor

(
L− supp

∆x

)
- 1,1);

S(end) = 1;

S =
∆x

3
S;

I=FF(floor

(
L− supp

∆x

)
+ 1:floor

(
L+ supp

∆x

)
+ 1) .ˆ 2 S;

83

I = sum(I);

llambda = max(0,λ(1:end-1)-κ FF(floor

(
L− supp

∆x

)
+ 1:floor

(
L+ supp

∆x

)
+ 1)’);

llambda = [llambda;max(0,λ(end) + κ (I-M))];

15.8 Optimization algorithm

Results=function optimisation()

clear all;
close all;
Running time=cputime;

15.8.1 Initialization part

Data

h0 = 1;
g = 9.81;
c0 =

√
gh0;

Fr = 1;

Constraints

M = 0.02;
κ = 30000;
supp = 1;

Spatial vector

∆x = 0.1;
L = 50;
X = -L:∆x:L;
LongX = length(X);

Temporal vector

∆t = 0.1;
tmax = 30;
T = 0:∆t:Tmax;
LongT = length(T);

Initial bottom

Fini =
0.1

2
[1 + cos (πX)] .* (X > −supp) .* (X 6 supp);

F = Fini;

λ = zeros(floor

(
L+ supp

∆x

)
-floor

(
L− supp

∆x

)
+ 2,1);

Results=zeros(4,0);

84

Simson matrix

S = zeros(floor

(
L+ supp

∆x

)
- floor

(
L− supp

∆x

)
+ 1,1);

S(1) = 1;

S(2:2:end-1) = 4 ones(floor((floor

(
L+ supp

∆x

)
) -

1

2
floor

(
L− supp

∆x

)
+ 1),1);

S(3:2:end-2) = 2 ones(floor((floor(

(
L+ supp

∆x

)
-

1

2
floor

(
L− supp

∆x

)
- 1,1);

S(end) = 1;

S =
∆x

3
S;

Stop criteria

Stop = 0;
Compteur = 0;

15.8.2 Temporal loop

Udata = fKdV(F,h0,c0,Fr,∆x,∆t,Tmax,X,LongX,L);
while Stop==0

Compteur=Compteur+1;

Computation of the lagrangian

Vdata = adjoint(Udata,h0, c0, Fr,∆x,X,LongX,∆t,L);

Vx =
1

2∆x
[Vdata(2,:);Vdata(3:end,:)-Vdata(1:end-2,:);-Vdata(end-1,:)];

Jb = functionnal(Udata,Tmax,∆t,∆x,LongX);
Lag = lagrangien(F,Jb,λ,L,∆x,M,supp);

Resolution of the minimization problem without constraints

dJ = d J(Vx,∆t, Tmax,X,LongX,supp);
dL = d L(dJ,F,λ,L,∆x,supp);
εini = 10 ˆ (floor(log10(mean(abs(F))))-floor(log10(mean(abs(dL)))) - 2);

if max(λ) == 0
εini = 10 ˆ (floor(log10(mean(abs(F))))-floor(log10(mean(abs(dL)))) - 1);

end;

F2 = (F - εini dL’) .* (X > −supp) .* (X6 supp);
Udata2 = fKdV(F2,h0,c0,Fr,∆x,∆t,Tmax,X,LongX,L);
Jb2 = functionnal(Udata2,Tmax,∆t,∆x,LongX);
Lag2 = lagrangien(F2,Jb2,λ,L,∆x,M,supp);

F3 = (F + εini dL’) .* (X > −supp) .* (X6 supp);
Udata3 = fKdV(F3,h0,c0,Fr,∆x,∆t,Tmax,X,LongX,L);
Jb3 = functionnal(Udata3,Tmax,∆t,∆x,LongX);
Lag3 = lagrangien(F3,Jb3,λ,L,∆x,M,supp);

P = polyfit([-εini,0,εini],[Lag3,Lag,Lag2],2);

85

if P(1) ¿ 0

εopt = − P (2)

2P (1)
;

if (εopt > −εini)&&(εopt 6 εini)
ε = εopt;

end;
if (εopt < −εini)

ε = −εini;
end;
if (εopt > εini)

ε = εini;
end;

end;
if P(1) ¡ 0

if Lag3 6 Lag2
ε = −εini;

end;
if Lag3 ¿ Lag2

ε = εini;
end;

end;

FF = (F - ε dL’) .* (X > −supp) .* (X6 supp);
UUdata=fKdV(FFh0,c0,Fr,∆x,∆t,Tmax,X,LongX,L);
JJb=functionnal(UUdata,Tmax,∆t,∆x,LongX);
LLag=lagrangien(FF,JJb,λ,L,∆x,M,supp);

Projection on the positive space

llambda=lambda projete(FF,λ,L,∆x,M,κ, supp);
Results=[Results [Jb;Lag;λ(end);ε;max(max(Udata))]];

Stop criteria

I = (FF

(
L− supp

∆x

)
+1:floor

(
L+ supp

∆x

)
.ˆ 2) S;

I = sum(I);
if (max(abs(FF-F)) 6 10−5) & & (max(abs(λ - llambda)) 6 10−1) & & (I 6 M) & &

(min(FF) > 0)
Stop = 1;

end;

Actualization

F=FF;
Udata=UUdata;
λ=llambda;

end;
Running time=cputime-Running time;

86

Bibliography

[1] L.H. Wiryanto & A. Achirul. An implicit finite difference method for a forced KdV
equation.

[2] P. G. Baines. Topographic Effects in Stratified Flows. Cambridge Monographs on Me-
chanics, 1998.

[3] M. Chen. Equations for bi-directional waves over an uneven bottom. Mathematics and
Computers in Simulation, 62(1-2):3–9, February 2003.

[4] D. Zhang & A.T. Chwang. Numerical study of nonlinear shallow water waves produced
by a submerged moving disturbance in viscous flow. Physics of Fluids, 8(1):147–155,
January 1996.

[5] D. Zhang & A.T. Chwang. On solitary waves forced by underwater moving objects.
Journal of Fluids Mechanics, 389:119–135, 1999.

[6] F. Conrad. Cours d’optimisation. Ecole Nationale Supérieure des Mines de Nancy.

[7] E.M. de Jager. On the origin of the Korteweg-de Vries equation. Korteweg-de Vries
Institute, University of Amsterdam, February 2006.

[8] G.M. Muslu & H.A. Erbay. A split-step Fourier method for the complex modified
Korteweg-de Vries equation. Computers and Mathematics with Applications, 45:503–514,
February 2003.

[9] T. Igushi. A mathematical justification of the forced Korteweg-de Vries equation for
capillary-gravity waves. Kyushu Journal of Mathematics, 60(2):267–303, 2006.

[10] P.G. Drazin & R.S. Johnson. Solitons : an introduction. Cambridge University Press,
1996.

[11] R.S. Johnson. A Modern Introduction to the Mathematical Theory of Water Waves.
Cambridge University Press, 1997.

[12] N.J. Zabusky & M.D. Kruskal. Interaction of solitons in a collisionless plasma and the
recurrence of initial states. Physical Review letters, 15(6):240–243, August 1965.

[13] Y. Cao & R.F. Beck & W.W. Schultz. Numerical computations of two-dimensional
solitary waves generated by moving disturbances. International Journal for Numerical
Methods in Fluids, 17(10):905–920, November 1993.

[14] D. Smets. Méthodes mathématiques pour la mécanique des fluides. Notes de cours pour
les étudiants de l’Ecole Normale Supérieure, January 2010.

87

[15] L.N. Trefethen. Spectral methods in Matlab, chapter 10, pages 110–113. Society for
Industrial and Applied Mathematics, 2000.

[16] M.A. Walkley. A Numerical Method for Extended Boussinesq Shallow-Water Waves
Equations. PhD thesis, The University of Leeds, School of Computer Studies, September
1999.

[17] E. Hairer & G. Wanner. Solving Ordinary Differential Equations, Stiff and Differential-
Algebraic Problems, chapter 4, pages 2–253. 1991.

[18] E. Hairer & S.P. Norsett & G. Wanner. Solving Ordinary Differential Equations, Nonstiff
Problems, chapter 2, pages 132–142. 2008.

[19] B. Fornberg & G.B. Whitham. A numerical and theoretical study of certain nonlinear
wave phenomena. Philosophical Transactions, 289(1361):373–404, May 1978.

[20] T.Y. Wu. Generation of upstream advancing solitons by moving disturbances. Journal
of Fluid Mechanics, 184:75–99, 1987.

[21] J.L. Bona & B. Zhang. The initial-value problem for the forced Korteweg-de Vries
equation. September 1994.

88

